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Abstract. We present an algorithm for finding the minimum cut of an undirected edge-weighted
graph. It is simple in every respect. It has a short and compact description, is easy to implement, and
has a surprisingly simple proof of correctness. Its runtime matches that of the fastest algorithm
known. The runtime analysis is straightforward. In contrast to nearly all approaches so far, the
algorithm uses no flow techniques. Roughly speaking, the algorithm consists of about uV u nearly
identical phases each of which is a maximum adjacency search.

Categories and Subject Descriptors: G.L.2 [Discrete Mathematics]: Graph Theory—graph algorithms
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1. Introduction

Graph connectivity is one of the classical subjects in graph theory, and has many
practical applications, for example, in chip and circuit design, reliability of
communication networks, transportation planning, and cluster analysis. Finding
the minimum cut of an undirected edge-weighted graph is a fundamental
algorithmical problem. Precisely, it consists in finding a nontrivial partition of the
graphs vertex set V into two parts such that the cut weight, the sum of the weights
of the edges connecting the two parts, is minimum.
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The usual approach to solve this problem is to use its close relationship to the
maximum flow problem. The famous Max-Flow-Min-Cut-Theorem by Ford and
Fulkerson [1956] showed the duality of the maximum flow and the so-called
minimum s-t-cut. There, s and t are two vertices that are the source and the sink
in the flow problem and have to be separated by the cut, that is, they have to lie
in different parts of the partition. Until recently all cut algorithms were
essentially flow algorithms using this duality. Finding a minimum cut without
specified vertices to be separated can be done by finding minimum s-t-cuts for a
fixed vertex s and all uV u 2 1 possible choices of t [ V \ {s} and then selecting
the lightest one.

Recently Hao and Orlin [1992] showed how to use the maximum flow
algorithm by Goldberg and Tarjan [1988] in order to solve the minimum cut
problem in time 2( uViE ulog( uV u2/ uE u), which is nearly as fast as the fastest
maximum flow algorithms so far [Alon 1990; Ahuja et al. 1989; Cheriyan et al.
1990].

Nagamochi and Ibaraki [1992a] published the first deterministic minimum cut
algorithm that is not based on a flow algorithm, has the slightly better running
time of 2( uViE u 1 uV u2 loguV u), but is still rather complicated. In the unweighted
case, they use a fast-search technique to decompose a graph’s edge set E into
subsets E1, . . . , El such that the union of the first k Ei’s is a k-edge-connected
spanning subgraph of the given graph and has at most k uV u edges. They simulate
this approach in the weighted case. Their work is one of a small number of
papers treating questions of graph connectivity by non-flow-based methods
[Nishizeki and Poljak 1989; Nagamochi and Ibaraki 1992a; Matula 1992]. Karger
and Stein [1993] suggest a randomized algorithm that with high probability finds
a minimum cut in time 2( uV u2 loguV u).

In this context, we present in this paper a remarkably simple deterministic
minimum cut algorithm with the fastest running time so far, established in
Nagamochi and Ibaraki [1992b]. We reduce the complexity of the algorithm of
Nagamochi and Ibaraki by avoiding the unnecessary simulated decomposition of
the edge set. This enables us to give a comparably straightforward proof of
correctness avoiding, for example, the distinction between the unweighted,
integer-, rational-, and real-weighted case.

This algorithm was found independently by Frank [1994].
Queyranne [1995] generalizes our simple approach to the minimization of

submodular functions.
The algorithm described in this paper was implemented by Kurt Mehlhorn

from the Max-Planck-Institut, Saarbrücken and is part of the algorithms library
LEDA [Mehlhorn and Näher 1995].

2. The Algorithm

Throughout the paper, we deal with an ordinary undirected graph G with vertex
set V and edge set E. Every edge e has nonnegative real weight w(e).

The simple key observation is that, if we know how to find two vertices s and t,
and the weight of a minimum s-t-cut, we are nearly done:

THEOREM 2.1. Let s and t be two vertices of a graph G. Let G/{s, t} be the
graph obtained by merging s and t. Then a minimum cut of G can be obtained by
taking the smaller of a minimum s-t-cut of G and a minimum cut of G/{s, t}.
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The theorem holds since either there is a minimum cut of G that separates s
and t, then a minimum s-t-cut of G is a minimum cut of G; or there is none, then
a minimum cut of G/{s, t} does the job.

So a procedure finding an arbitrary minimum s-t-cut can be used to construct a
recursive algorithm to find a minimum cut of a graph.

The following algorithm, known in the literature as maximum adjacency search
or maximum cardinality search, yields the desired s-t-cut.

MINIMUMCUTPHASE(G, w, a)
A 4 {a}
while A Þ V
add to A the most tightly connected vertex
store the cut-of-the-phase and shrink G by merging the two vertices added last

A subset A of the graphs vertices grows starting with an arbitrary single vertex
until A is equal to V. In each step, the vertex outside of A most tightly connected
with A is added. Formally, we add a vertex

z [y A such that w~ A, z! 5 max$w~ A, y! uy [y A% ,

where w( A, y) is the sum of the weights of all the edges between A and y. At the
end of each such phase, the two vertices added last are merged, that is, the two
vertices are replaced by a new vertex, and any edges from the two vertices to a
remaining vertex are replaced by an edge weighted by the sum of the weights of
the previous two edges.

Edges joining the merged nodes are removed.
The cut of V that separates the vertex added last from the rest of the graph is

called the cut-of-the-phase. The lightest of these cuts-of-the-phase is the result of
the algorithm, the desired minimum cut:

MINIMUMCUT(G, w, a)
while uV u . 1

MINIMUMCUTPHASE(G, w, a)
if the cut-of-the-phase is lighter than the current minimum cut

then store the cut-of-the-phase as the current minimum cut

Notice that the starting vertex a stays the same throughout the whole
algorithm. It can be selected arbitrarily in each phase instead.

3. Correctness

In order to proof the correctness of our algorithms, we need to show the
following somewhat surprising lemma.

LEMMA 3.1. Each cut-of-the-phase is a minimum s-t-cut in the current graph,
where s and t are the two vertices added last in the phase.

PROOF. The run of a MINIMUMCUTPHASE orders the vertices of the current
graph linearly, starting with a and ending with s and t, according to their order of
addition to A. Now we look at an arbitrary s-t-cut C of the current graph and
show, that it is at least as heavy as the cut-of-the-phase.
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We call a vertex v Þ a active (with respect to C) when v and the vertex added
just before v are in the two different parts of C. Let w(C) be the weight of C, Av

the set of all vertices added before v (excluding v), Cv the cut of Av ø {v}
induced by C, and w(Cv) the weight of the induced cut.

We show that for every active vertex v

w~ Av, v! # w~Cv!

by induction on the set of active vertices:
For the first active vertex, the inequality is satisfied with equality. Let the

inequality be true for all active vertices added up to the active vertex v, and let u
be the next active vertex that is added. Then we have

w~ Au, u! 5 w~ Av, u! 1 w~ Au \ Av, u! 5: a

Now, w( Av, u) # w( Av, v) as v was chosen as the vertex most tightly connected
with Av. By induction w( Av, v) # w(Cv). All edges between Au \ Av and u
connect the different parts of C. Thus they contribute to w(Cu) but not to
w(Cv). So

a # w~Cv! 1 w~ Au \ Av, u! # w~Cu!

As t is always an active vertex with respect to C we can conclude that w( At, t) #

w(Ct) which says exactly that the cut-of-the-phase is at most as heavy as C.

4. Running Time

As the running time of the algorithm MINIMUMCUT is essentially equal to the
added running time of the uV u 2 1 runs of MINIMUMCUTPHASE, which is called
on graphs with decreasing number of vertices and edges, it suffices to show that a
single MINIMUMCUTPHASE needs at most 2( uE u 1 uV u log uV u) time yielding an
overall running time of 2( uViE u 1 uV u2 log uV u).

The key to implementing a phase efficiently is to make it easy to select the next
vertex to be added to the set A, the most tightly connected vertex. During
execution of a phase, all vertices that are not in A reside in a priority queue
based on a key field. The key of a vertex v is the sum of the weights of the edges
connecting it to the current A, that is, w( A, v). Whenever a vertex v is added to
A we have to perform an update of the queue. v has to be deleted from the
queue, and the key of every vertex w not in A, connected to v has to be increased
by the weight of the edge vw, if it exists. As this is done exactly once for every
edge, overall we have to perform uV u EXTRACTMAX and uE u INCREASEKEY

operations. Using Fibonacci heaps [Fredman and Tarjun 1987], we can perform
an EXTRACTMAX operation in 2(loguV u) amortized time and an INCREASEKEY

operation in 2(1) amortized time.
Thus, the time we need for this key step that dominates the rest of the phase,

is 2( uE u 1 uV uloguV u).
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5. An Example

FIG. 1. A graph G 5 (V, E) with edge-weights.

FIG. 2. The graph after the first MINIMUMCUTPHASE(G, w, a), a 5 2, and the induced ordering a,
b, c, d, e, f, s, t of the vertices. The first cut-of-the-phase corresponds to the partition {1}, {2, 3, 4,
5, 6, 7, 8} of V with weight w 5 5.

FIG. 3. The graph after the second MINIMUMCUTPHASE(G, w, a), and the induced ordering a, b, c,
d, e, s, t of the vertices. The second cut-of-the-phase corresponds to the partition {8}, {1, 2, 3, 4, 5,
6, 7} of V with weight w 5 5.

FIG. 4. After the third MINIMUMCUTPHASE(G, w, a). The third cut-of-the-phase corresponds to the
partition {7, 8}, {1, 2, 3, 4, 5, 6} of V with weight w 5 7.
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