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ABSTRACT

Given a solution x* and an a priori estimated cost vector c, the inverse optimization problem is to

identify another cost vector d so that x* is optimal with respect to the cost vector d and the deviation of d

from c is minimum.  In this paper, we consider the inverse spanning tree problem on an undirected graph G =

(N, A) with n nodes and m arcs, and where the deviation between c and d is defined by

the rectilinear distance between the two vectors (that is, L1 norm).  We show that the inverse spanning tree

problem can be formulated as the dual of an assignment problem on a bipartite network G0 = (N0, A0) with

N0 = N1 ∪ N2 and A0 ⊆ N1 x N2.  The bipartite network satisfies the property that |N1| = (n - 1), |N2| = (m

- n + 1), and |A0| = O(nm).  In general, |N1|  < < |N2|.    Using this special structure of the assignment

problem, we develop a specific implementation of the successive shortest path algorithm that solves the

inverse spanning tree problem in O(n3) time.  We also consider the weighted version of the inverse spanning

tree problem where we minimize the sum of the weighted deviations of arcs and show that it can be

formulated as the dual of the transportation problem.  Using a cost scaling algorithm, the transportation

problem can be solved in O(n2 m log(nC)), where C denotes the largest arc cost in the data.  Finally, we

consider a minimax version of the inverse spanning tree problem and show that it can be solved in O(n2)

time.
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1.    INTRODUCTION

Let X denote the set of feasible solutions of an optimization problem.  Given a solution x* ∈ X and an

a priori estimated cost vector c, the inverse optimization problem is to identify another cost vector d so that

dx* ≤  dx for all x ∈ X and such that the deviation of d from c is minimum.  Roughly speaking, the inverse

optimization problem is to identify a cost vector d which is nearest to a specified cost vector c and with

respect to which the given solution x* is an optimal solution of the optimization problem.  In this paper, we

study inverse minimum spanning tree problems using three different ways to measure deviations between

the cost vectors.

Bitran, Chandru, Sempolinski and Shapiro [1981] studied the inverse optimization for the

capacitated plan location problem.  To our knowledge, Bitran et al. introduced the concept of inverse

optimization, although it was anticipated by Everett [1963] and by the literature in numerical analysis.

Inverse network optimization problems were first studied by Burton and Toint [1992, 1994].  They studied the

inverse multiple-source shortest path problem with deviation between two vectors c and d measured by the

L2 norm.  They show applications of these problem in traffic modeling and seismic tomography, and suggest

a nonlinear programming algorithm to solve the problem.  Inverse minimum cost flow problems with L1, L2

and L∞ norms have been studied by Sokkalingam [1995].  To the best of our understanding, prior to this

research no one has studied the inverse spanning tree problems.

Inverse optimization is an alternative approach to measure deviation from optimality.  Rather

than measuring the distance of a solution x* from optimality by comparing its objective value to the

objective value to the optimum, one poses the following question:  How much would one need to perturb the

data so that x* is optimum?  This inverse perspective is of special interest when the cost data is subject to

measurement error, which is typically the case.   Also, the inverse optimization objective has the

advantage that it is less sensitive to changes in the cost data.  Changing a cost coefficient by one unit can

have a major impact in deviation from optimality in the usual sense, but it can only increase the inverse

objective function by 1 unit.   We also note that the concept of -optimality , which is a critical aspect of the

Goldberg-Tarjan [1987] algorithm for the minimum cost flow problem, is closely related to inverse

optimization.  One definition of ε-optimality is the following: a solution x* is called -optimal  for the

minimum cost flow problem if it is possible to perturb each cost coefficient by at most ε so that x* is optimal

for the perturbed problem.

In this paper, we first study the inverse spanning tree problem in an undirected graph G = (N, A)

with n nodes, m arcs, and in which the deviation between two arc cost vectors c and d is defined by  the

rectilinear distance between the two vectors.  We show that the inverse spanning tree problem can be

formulated as the dual of an assignment problem on a bipartite graph with G0 = (N0, A0) with N0 = N1 ∪

N2 and A0 ⊆ N1 x N2.  The bipartite network G0 satisfies the property that |N1| = (n - 1), |N2| = (m - n + 1),
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and |A0| = O(nm).  Often, n < < m; hence |N1| < < |N2|.  Such an assignment problem is called unbalanced.

We develop a specific implementation of the well known successive shortest path algorithm for the

assignment problem on G0 which obtains a shortest path in an amortized (that is, average) time of O(n2).

This running time is often much better than the running time of O(|A0|), which is the number of arcs in G0.

The resulting algorithm solves the assignment problem, and hence the  inverse spanning tree problem in

O(n3) time.

Next we consider the weighted version of the inverse spanning tree problem in which the deviation

between two cost vectors c and d is defined by the weighted rectilinear distance between the two vectors.

We show that the weighted spanning tree problem can be formulated as the dual of a transportation

problem on G0 and can be solved by a cost scaling algorithm in O(n2 m log(nC)) time, where C denotes the

largest arc cost.  Finally,  we  consider the minimax version of the inverse spanning tree problem and show

that the minimax inverse spanning tree problem can be solved in O(n2) time.

This paper is organized as follows.  Section 2 shows that the inverse spanning tree problem is the

dual of an unbalanced assignment problem.  Section 3 describes an algorithm for the assignment problem and

shows how to obtain an optimal solution of the inverse spanning tree problem from the optimal solution of

the assignment problem.  Section 4 considers the weighted inverse spanning tree problem, and Section 5

studies the minimax version of the inverse  spanning tree problem.

2.  TRANSFORMATION TO THE ASSIGNMENT PROBLEM

In this section, we show that the inverse spanning tree problem can be transformed to an assignment

problem.  In this section, as well as elsewhere, we follow the network notation given in the book of Ahuja,

Magnanti and Orlin [1993], and refer the reader to the same.  We denote the complement of any set S by

placing a bar on it, that is, by  S
-
.

Let G = (N, A) be an undirected network consisting of the node set N and the arc set A.  Let n = |N|

and m = |A|.  We assume that N = {1, 2, ... , n}, and A = {a1, a2, ... , am}.  The data of the inverse spanning tree

problem consists of a spanning tree  T* of G and an arc cost vector c with ci denoting the cost of arc ai.  We

assume without any loss of generality that T* = {a1, a2, ... , an-1}.  We refer to the arcs in T* as tree arcs and

the arcs in {an, an+1, ... , am} as nontree arcs.  The objective in the inverse spanning tree problem is to find an

arc cost vector d such that T* is optimal with respect to d and Σm
j=1 |cj - dj| is minimum.

In the given spanning tree T*, there is a unique tree path between any two nodes; we denote by the

set Pj the indices of the tree arcs on the path in T* connecting the two endpoints of arc aj.   It is well known

(see, for example, Ahuja, Magnanti and Orlin [1993]) that T* is a minimum spanning tree with respect to the

arc cost vector d if and only if
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di ≤ dj for each i ∈ Pj and for each j = n, ... , m. (1)

 The inverse spanning tree problem can alternatively be conceived in the following manner.

Consider the spanning tree T*.  The tree T* may or may not be optimal with respect to the given cost vector c.

If it is, then d = c is the desired cost vector with zero objective function value.  If not, then we must perturb

the given cost vector c by α so that T* is optimal with respect to (c + α) and Σm
j=1 |α j| is minimum.  This

observation allows us to formulate the inverse spanning tree problem as the following mathematical

program:

Minimize Σm
j=1  |α j| (2a)

subject to

ci + αi  ≤ cj  + α j for each i ∈ Pj and for each j = n, ... , m , (2b)

α j is unrestricted for each  j = 1, 2, ... , m. (2c)

Property 1.  There exists an optimal solution of (2) in which i ≤ 0 for each i = 1 to (n-1) and j  ≥ 0 for each

j = n to m.

Proof.  Observe that if αi > 0  for some i, 1 ≤ i ≤ (n-1), then we can set αi = 0 without violating any conditions

in (2b) and without worsening the objective function value (2a). This establishes the first claim.  A similar

argument establishes the  second claim. ♦

Using Property 1, we obtain the following equivalent formulation of the inverse spanning tree

problem:

Minimize  Σm
j=n  α j   -   Σ

(n-1)
i=1  αi (3a)

subject to

ci + αi  ≤ cj  + α j for each i ∈ Pj and for each j = n, ... , m , (3b)

αi ≤ 0 for each i = 1 to (n-1), and α j ≥ 0 for each j = n to m. (3c)

We now reformulate (3) using the concept of Path Graph , which allows us to express the constraints

in (3b) in a manner more suitable for manipulation.  The path graph, which we denote by G0 = (N0, A0)

with N0 = N1 ∪ N2 satisfies N1 = {1, 2, ... , (n-1)}, N2 = {n, n+1, ... , m}, and A0 = {(i, j) : i ∈ Pj, n ≤ j ≤ m}.

Observe that A0 contains an arc (i, j) for every inequality in (3b).  (We may, however, exclude those arcs (i,

j) for which ci ≤ cj because any vector α satisfying (3c) will automatically satisfy ci + αi  ≤ cj  + α j.)  We will
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also like to restate (3) in the maximization form; we can do it by maximizing the negative of (3a).  The

modified formulation of the inverse spanning tree problem is as follows:

Maximize   Σ
i∈N1 αi  - Σ j∈N2  α j (4a)

subject to

αi - α j  ≤  fij      for each arc (i, j) ∈ A0, (4b)

αi ≤ 0 for each node i ∈ N1 and α j ≥ 0 for each node  j ∈ N2, (4c)

where  f ij = cj - ci for each arc (i, j) ∈ A0.  The formulation (4) is a linear programming problem and has an

associated dual.  If we associate the dual variable xij with the arc (i, j) in (4b), then the dual of (4) can be

stated as follows:

Minimize Σ  (i,j)∈A0 fij xij (5a)

subject to

Σ  {j:(i,j)∈A0}       xij ≤   1      for each node i ∈ N1, (5b)

- Σ  {i:(i,j)∈A0}    xij ≥ -1     for each node j ∈ N2, (5c)

   xij ≥  0      for each arc (i, j) ∈ A0. (5d)

The formulation (5) is a variant of the well known assignment problem.  In the standard assignment

problem, the constraints (5b) and (5c) are in equality form and |N1| = |N2|.  In our variant, it is possible that

|N1| < < |N2|.  We refer to the formulation (5) as the unbalanced assignment problem.

3.    SOLVING THE ASSIGNMENT PROBLEM

We have shown in Section 2 that the inverse minimum spanning tree problem can be transformed to

an unbalanced assignment problem on a bipartite network G0 = (N1 ∪ N2, A0), where generally |N1| < <

|N2|.  In this section, we develop a special purpose algorithm to solve the assignment problem, using the

fact that |N1| < < |N2| to obtain a speedup.  The algorithm runs in O(n3) time.  We point out that for a

dense network G (that is, m = Ω (n2)), the network G0 may contain as many as Ω (n3) arcs.  Since any

algorithm for the assignment problem  must look at each arc at least one,  our O(n3) algorithm for solving

the assignment problem is an optimal algorithm for some classes of network G.

Consider any feasible assignment x of (5) which is a 0-1 vector.  For this assignment, the nodes

which satisfy the constraints (5b) or (5c) with equality are called matched  nodes, and unmatched nodes
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otherwise.  Often |N1| < |N2|, and most nodes in N2 are not be matched in an optimal assignment.  As a

matter of fact, in a minimum cost assignment, it is possible that some nodes in N1 are not matched.

We can transform the unbalanced assignment problem (5) on G0 = (N1 ∪ N2, A0) into a minimum cost

flow problem in the following manner.  We introduce a source node s with supply b(s) = n, and add an arc (s,

i) for each i ∈ N1 with cost fsi = 0 and  capacity usi = 1.  Similarly, we introduce a sink node t with b(t) = -n,

and add an arc (j, t) for each j  ∈ N2  with cost f jt = 0 and capacity ujt = 1.  We also add an arc (s, t) with fst = 0

and uts = (n+1).  We set the supply/demand b(i) of each node i ∈ N0 to zero.  We set the capacity of each arc

(i, j) ∈ A0 to n; the cost of this arc is fij.  Let G' = (N', A') denote the resulting network.  Let n' = |N'| and m' =

|A'|.  Observe that n' = (m+2) and m' = O(nm).  Also observe that similar to G0, G'  too is a bipartite

network.  We denote by A'(i) the set of arc in A' emanating from node i.   The following property establishes

a connection between the minimum cost flow problem in G' and the assignment problem in G0.

Property 2.  There is a one-to-one correspondence between feasible flows in G' and feasible assignments in G0,

and the cost of the  flows and assignments are the same.

Proof.  Consider a feasible flow x in G'.  Eliminating nodes s and t and the arcs incident on these nodes gives a

solution of the assignment problem in G0 having the same cost.  Now consider a feasible assignment x in  G0.

For each arc (i, j) ∈ A0 with xij = 1, we send one unit of flow on arcs in (s, i) and (j, t).  Then we send sufficient

flow on arc (s, t) to satisfy the supply/demand constraints of nodes s and t.          ♦

We can use the well known successive shortest path algorithm to solve the minimum cost flow

problem in G' (see, for example, Ahuja, Magnanti and Orlin [1993] for a detailed description of this

algorithm).  The successive shortest path algorithm maintains a primal infeasible flow x and a dual

feasible solution π satisfying the following optimality conditions:

(i) If 0 < xij < uij, then fπ
ij = 0, (6a)

(ii) If xij = 0, then fπ
ij ≥ 0, (6b)

(ii i) If xij = uij, then fπ
ij ≤ 0, (6c)

where fπ
ij  = fij - π(i) + π(j).

The successive shortest path algorithm starts with x = 0 and requires a dual solution π which

together with x = 0 satisfies the optimality conditions given in (6).  It is easy to verify that π(j) = 0 for all j

∈ N2∪{t}, π(i) = min{fij : (i, j) ∈ A0} for all i ∈ N1, and π(s) = min{π(i) : i ∈ N1} is one such solution. The

successive shortest path algorithm proceeds by augmenting unit flow along shortest paths from node s to

node t in the residual network G'(x) defined with respect to the flow x.   In general, the shortest paths are

computed with respect to the reduced costs fπ which are always nonnegative.  An iteration of the successive

shortest path algorithm consists of determining shortest path distances d(i)'s from node s to all other nodes

in the residual network G'(x) with respect to the arc costs fπij 
's, updating node potentials as π = π - d, and
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augmenting unit flow along the shortest path from node s to node t.  After a number of shortest path

augmentations, the arc (s, t) will become the shortest path from node s to node t, and the  algorithm will

terminate after augmenting flow on this arc.  (Observe that arc (s,t) will become a shortest path because (i)

b(s) = n,  (ii) |N1| = (n-1), (iii) the capacity of each arc (s, i) is 1, which imply that any feasible flow will

have positive flow on the arc (s, t). )  Let x denote the optimal flow and π denote the optimal dual solution

of the minimum cost flow problem.

Property 3.   The optimal primal solution x together with the optimal dual solution of the minimum cost

flow problem satisfies the following conditions:

(a) (s) = 0 and (t) = 0.

(b) For each arc (s, i), if xsi = 1 then (i) ≤ 0; if xsi = 0 then (i) ≥ 0.

(c) For some arc (j, t), if xjt = 1 then (j) ≥ 0; if xjt = 0 then (j) ≤ 0.

Proof.  We can assume without any loss of generality that π(t) = 0.  Since 0 < xts < uts, it follows from (6a)

that fπ
st  = 0 which implies π(s) = 0, establishing part (a) of the property.  Now consider part (b).  If xsi = 1

then it follows from (6c) that fπ
si  ≤ 0 which implies π(i) ≤ 0.   If xsi = 0, then it follows from (6b) that fπsi  ≥ 0

which implies π(i) ≥ 0.  This establishes part (b).  Next consider part (c).  If xjt = 1, then it follows from (6c)

that fπ
jt  ≤ 0 which implies π(j) ≥ 0.   If xjt = 0, then it follows from (6b) that fπjt  ≥ 0 which implies π(j) ≤ 0,

establishing part (c). ♦

We will now show that the solutions x and π can be used to obtain an optimal solution of the inverse

spanning tree problem.  It follows from Property 2 that the flow x has a corresponding assignment.  For

simplicity of notations, we view x as denoting the corresponding assignment as well.

Lemma 1.   The vector defined by (7) is an optimal solution of the inverse spanning tree problem:

i = { (i)  for every  matched node  i in x
0      for every  unmatched node i in x. (7)

Proof. It follows from Property 3(b) and (c) that α is feasible to (4).  Now consider a matched arc (i, j) .

Since 0 < xij < uij, it follows from (6a) that fπ
ij = 0, and thus fij - π(i) + π(j) = 0.  Since both the nodes i and j are

matched, using (7) we obtain that αi - α j = fij.  Summing these equations for all matched arcs and using the

facts that (i) xij = 0 for each unmatched arc (i, j), and (ii) αi = 0 for each unmatched node i yields

Σi∈N1  αi  - Σ j∈N2 α j  = Σ  (i, j)∈A0 fij xij .

Since α is a feasible solution of the primal problem (4), x is a feasible solution to the dual problem, and

their objective function values are the same, it follows that α is an optimal solution of the primal problem

(4).  This completes the proof of the lemma. ♦
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It follows from Lemma 1 that the optimal cost vector d of the inverse spanning tree problem is given

by  dj = cj + α j  for each j = 1, ... , m.

We now analyze the running time of the successive shortest path algorithm.  The algorithm solves

at most |N1| shortest path problems with arc lengths as fπ
ij 's which are nonnegative.  Using Fibonacci heap

implementation of Dijkstra's algorithm due to Fredman and Tarjan [1984], each shortest path problem can

be solved in O(m' + n' log n') time.  Consequently, this approach can solve the inverse spanning tree problem

in O(|N1| (m' + n' log  n)) = O(n2m) time, because |N1| = (n-1), n' = (m+2), and m' = O(nm).

Improved Algorithm

The bottleneck step in our approach is the successive applications of Dijkstra's algorithm with

each application requiring O(m' + n' log  n) time.  We will now describe an improved implementation of

Dijkstra's algorithm for the case when n2 ≤ (m' + n' log n).  In this case, we show that we can perform all the

applications of Dijkstra's algorithm in O(n3) total time using data structures simpler than Fibonacci heap.

Dijkstra's algorithm, when applied on the residual network G'(x) with arc lengths fπij 's, to find a

shortest path from node s to node i, maintains a distance label d(i) with each node i ∈ N'.  A distance label

d(i)  is either finite or infinite; if it is finite, then it denotes the length of some directed path from node s to

node i; otherwise, it implies that a directed path to node i is yet to be discovered.  A finite distance label

d(i) is permanent if it is guaranteed to be the shortest path length to node i, and is temporary otherwise.  In

each iteration, Dijkstra's algorithm selects a minimum temporary distance label d(i), makes it permanent,

and examines each arc (i, j) ∈ A'(i) to update d(j) = min{d(j), d(i) + fπ
ij}.  The algorithm terminates when all

distance labels become permanent.

We make two changes in Dijkstra's algorithm to improve its worst-case complexity when applied

to G'.

Change 1.    Permanently label node t as soon as it has the minimum distance label among temporarily

labeled nodes.  Then  terminate Dijkstra's algorithm.

Recall that the successive shortest path algorithm requires a shortest path from node s to node t

and such a path becomes available as soon as node t is permanently labeled.  Hence there is no need to

permanently label more nodes.

Recall from our previous discussion that in every iteration the successive shortest path algorithm

updates the node potentials as π(i) = π(i)  - d(i) for each node i in N', which ensures that the reduced costs

remain nonnegative.  In case we terminate Dijkstra's algorithm prematurely, we need to update the node

potentials as π(i) = π(i) + max{d(t) - d(i)} for each permanently labeled node i in N'.  It follows from Lemma

2 proved below that updating the node potentials takes O(n) time and, as shown in Ahuja, Magnanti and

Orlin [1993], it also ensures that the arc reduced costs remain nonnegative.
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An immediate byproduct of Change 1 is the following lemma.

Lemma 2.  Dijkstra's algorithm permanently labels at most 2n nodes.

Proof.  In the residual network G'(x), nodes in N1 ∪ N2 are either matched or unmatched.  Since G'(x)

permits at most |N1| = (n-1) units of flow to be sent from node s to node t, there will be at most (n - 1)

matched nodes in N1 and at most (n-1) matched nodes in N2.  Therefore, after at most 2(n - 1) nodes have

been permanently labeled, an unmatched node in N2, say node k, will be permanently labeled.

Immediately thereafter, arc (k, t) is examined, which is the unique arc emanating from node k, and d(t) is

updated to d(t) = d(k) + fπkt = d(k) (because fπkt = fkt = 0).  Since in Dijkstra's algorithm, distance labels of

permanently labeled nodes are non-decreasing, it follows that node t acquires the minimum distance label,

and in the next iteration Dijkstra's algorithm permanently labels it.  In total, the algorithm permanently

labels at most 2n nodes. ♦

We now explain the second change.  We partition the arc adjacency list A'(i) of each node i ∈ N1 in

G'(x) into two parts M(i) and U(i), where M(i) = {(i, j) ∈ A'(i) : node j is matched} and U(i) = {(i, j) ∈ A'(i) :

node j is unmatched}.  Notice that |M(i)| ≤ n, but U(i) can be as big as |N2| - |N1|, which is O(m).  In the

second change,  Dijkstra's algorithm refrains from examining all arcs in U(i).

Change 2.  In Dijkstra's algorithm, when node i is permanently labeled, then examine all arcs in M(i) but

only the smallest cost arc in U(i).

We now show that Change 2 does not affect the correctness of Dijkstra's algorithm.  We first

observe that π(j) = 0 for each unmatched node j in N2.  (This is true at initialization, and π(j) is not updated

until node j is matched.) So the arc in U(i) with the smallest cost is also the arc in U(i) with smallest

reduced cost.  Suppose that we apply Dijkstra's algorithm without Change 2; that is, we examine all arcs in

U(i).  Consider the first time an unmatched node j ∈ N2 has the minimum temporary distance label.

Clearly, d(j) = d(i) + fπ
ij  for some permanently labeled node i ∈ N1 such that (i, j) ∈ A0.  We claim that arc

(i, j) is the  arc in U(i) with minimum reduced cost.  For, if this is not true and (i, k) is the minimum reduced

cost arc in U(i), then d(k) = d(i) +  fπik  < d(i) +  fπ
ij  = d(j), contradicting that node j is the minimum temporary

distance label in N2.  This argument establishes that if instead of examining all arcs in U(i) we examine

only the least reduced cost arc in U(i), Dijkstra's algorithm will run correctly.

A byproduct of Change 2 is the following lemma.

Lemma 3.  In any iteration, Dijkstra's algorithm will have at most 2n temporary distance labels.

Proof.  Each temporary distance label is caused by some permanently labeled node; we say that it was

caused by the node which modified it last.  Now notice that each node i ∈ N1 is either temporarily labeled

or permanently labeled; if it is permanently labeled then it can cause several temporary distance labels of

matched nodes in N2  but at most one unmatched node in N2.  Since there are at most (n - 1) matched nodes in

N2, there will be at most 2n temporary distance labels in any iteration. ♦
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We can now analyze the worst-case complexity of the successive shortest path algorithm that uses

Dijkstra's algorithm incorporating Change 1 and Change 2.  It follows from Lemma 2 that Dijkstra's

algorithm will perform O(n) iterations.  It follows from Lemma 3 that in each iteration it can identify in

O(n) time a node with the minimum temporary distance label, say node i.  Examining all arcs in M(i) and

the minimum cost arc in U(i) also takes O(n) time plus the time to identify the minimum cost arc in U(i).

Thus each application of Dijkstra's algorithm takes O(n2) time plus the time needed to identify minimum

cost arcs in U(i).  Therefore, the successive shortest path algorithm, which applies Dijkstra's algorithm at

most n times, runs in O(n3) time plus the time needed to identify minimum cost arcs in U(i).

We now explain how to identify minimum cost arcs in U(i) quickly.  Recall that the arc in U(i) with

the minimum reduced cost is also the arc in U(i) with minimum cost.  So we maintain the arcs in U(i)  for

each node i ∈ N1 using a binary heap with cost of the arc (i, j) as its key.  These heaps are constructed once

at the beginning, and are updated after each application of Dijkstra's algorithm, so that they can be reused

in the next application.  Initially, U(i) = A'(i) and these heaps for all the nodes can be constructed in O(m')

time (see, for example, Cormen, Leiserson and Rivest [1990]).  In a binary heap, each heap operation, like

(i) identifying a minimum cost arc in U'(i); and (ii) deleting an arc in U'(i) can be performed in O(log n)

time.  Suppose during an application of Dijkstra's algorithm, an additional node in N2, say node k, get

matched.  We then need to update some heaps.  To do so, we consider each arc (i, k) ∈ A0 with i ∈ N1 and

remove it from U(i); this takes a total of O(log n) time per arc and a total of O(n log n) time for node k.  The

total time taken by the heap operations in all the applications of Dijkstra's algorithm is O(m' + n2 log n).

Since m' = O(nm) and m = O(n2), the heap operations also take O(n3) time.  We can summarize the

discussion in this section by the following theorem.

Theorem 1.   The successive shortest path algorithm can solve the unbalanced assignment problem and,

hence, the inverse spanning tree problem in O(n3) time.

4.  WEIGHTED INVERSE SPANNING TREE PROBLEM

In this section, we consider the weighted spanning tree problem.  This problem is a generalization of

the inverse spanning tree problem, where the objective is to minimize the weighted deviation from the

given cost vector.  Suppose we associate a nonnegative weight w j  with each arc aj ∈ A.  Then the weighted

inverse spanning tree problem can be formulated as the following  mathematical program:

Minimize  Σm
j=n  wj α j   -   Σ

(n-1)
i=1   wi αi      subject to (3b) and (3c).

 Using exactly the same method we used for the unit weight case, the weighted inverse spanning

tree problem can be reformulated as

Maximize   Σ
i∈N1 wi αi  - Σ j∈N2  wj α j    subject to (4b) and (4c).
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The dual of this problem is as follows:

Minimize Σ  (i,j)∈A0 fij xij (8a)

subject to

Σ {j: (i,j) ∈ A0} xij ≤ wi for each node i ∈ N1, (8b)

              - Σ {i: (i,j) ∈ A0} xij ≥ - wj for each node j ∈ N2, (8c)

xij ≥ 0 for each arc (i, j) ∈ A0, (8d)

where fij = (cj - ci).  The formulation (8) is a variant of the well known standard transportation problem.  In

the standard transportation problem, the constraints (8b) and (8c) are in the equality form and             Σi∈N1

wi =  Σi∈N2 wj, which are not satisfied in the variant.  We refer to the formulation (8) as the unbalanced

transportation problem.  We will show that an adaptation for the cost scaling algorithm for bipartite

networks can solve the unbalanced transportation problem in O(n2 m log(nC)) time, where C = max{|cj| : aj ∈

A}.

The cost scaling algorithm requires that the mass balance constraints are in the equality form,

which (8) does not satisfy.  To satisfy this condition, we first construct the network G' = (N', A') as described

in Section 3 with the modification that the capacity of the arc (s, i) with i ∈ N1 is set to wi and the

capacity of the arc (j, t) with j ∈ N2 is set to wj.  We set b(s) = -b(t) = min{Σi∈N1 wi ,  Σ j∈N2 wj} + 1.  Also

observe that the unbalanced transportation problem in (8) reduces to a minimum cost flow problem in G'.

Goldberg and Tarjan [1987] describe a cost scaling algorithm that can solve the minimum cost flow

problem on the network G' = (N', A') in O((n')3 log(n'C)) time, where C is the largest magnitude of the arc

costs.  Ahuja, Orlin, Stein, and Tarjan [1994] describe an improved implementation of the cost scaling

algorithm for those bipartite networks where one part is considerably smaller than the other part.  This

algorithm can solve the minimum cost flow problem in G' in O(( |N1|)3 + (|N1| m') log(nC)).  Since |N1| = (n -

1), m' = O(nm), the running time of this algorithm becomes O(n2m log(nC)).

Let x denote the optimal primal solution and π denote the optimal dual solution of the minimum

cost flow problem.   For these solutions, we obtain α in the following manner:

αi   = 


0      if node i ∈ N1 and arc (s, i) is not saturated
π(i)  if node i ∈ N1 and arc (s, i) is saturated

α j   = 


0       if node j ∈ N2 and arc (j, t) is not saturated
π(j)   if node j ∈ N2 and arc (j, t) is saturated.
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In a manner analogous to the unweighted case, it can be shown that α defined in the above manner is

optimal for the weighted inverse spanning tree problem.  We have thus proved the following theorem.

Theorem 2.   The cost scaling algorithm for bipartite networks can solve the unbalanced transportation

problem, and hence the weighted inverse spanning tree problem, in O(n2m log(nC)) time.

5.  MINIMAX INVERSE SPANNING TREE PROBLEM

In this section, we consider the variation of the inverse spanning tree problem where the objective is

to minimize the maximum arc deviation instead of minimizing the sum of the arc deviations.  This problem

can be formulated in the following manner:

Minimize [max {|βj| :  1 ≤ j ≤ m}] (9a)

subject to

ci + αi  ≤ cj  + α j for each i ∈ Pj and for each j = n, ... , m,

or, alternatively,

 α j - αi  ≥ ci  -  cj  for each i ∈ Pj and for each j = n, ... , m, (9b)

αi ≤ 0 for each i = 1 to (n-1), and α j ≥ 0 for each j = n to m. (9c)

Let

δ = max [ci - cj : for each i ∈ Pj and for each j = n, ... , m}. (10)

If δ < 0, then c is an optimal cost vector for T* .  Thus, we consider the case when δ ≥ 0.  It is easy to see that

δ/2 is a lower bound on the objective function value of the minimax inverse spanning tree problem, because

for some arc pair α j - αi  ≥  δ and one of them will be at least δ/2 in magnitude.   It is also easy to see that αi

= -δ/2 for each i, 1 ≤ i ≤ (n-1), and α j = δ/2 for each j, n ≤ j ≤ m,  achieves this lower bound and satisfies every

constraint in (9).  We have established the following result.

Lemma 4.  i = min{0, - /2} for each i, 1 ≤ i ≤ (n-1), and j = max{0, /2} for each j, n ≤ j ≤ m, with defined by

(10) is an optimal solution of the minimax inverse spanning tree problem. 

We now study the time complexity of the minimax inverse spanning tree problem.  The computation

of δ is the bottleneck operation in the algorithm.  If done in an straightforward fashion, it takes O(mn)

time.  However, we can do it in O(n2) time as described next.  Let E = {eij} denote an nxn matrix whose ij-th

element gives the largest cost of a tree arc in the unique path in T* connecting nodes i and j.  We can

determine the i-th row of E in O(n) time by performing a search of T* starting at node i.  Therefore, the E

matrix can be computed in O(n2) time.  We claim that

δ = max [ et[j],h[j]  - cj : n ≤ j ≤ m ], (11)
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where t[j] and h[j] respectively denote the tail and head nodes of the arc aj.  The claim follows from the fact

that for any nontree arc aj the tree arc ai with the largest value of ci will attain the largest value of ci - c j

and et[j],h[j] gives this value.  Once the matrix E is available, we can compute δ in O(m) time using (11).  We

have thus established the following theorem.

Theorem 3.  The minimax inverse spanning tree problem can be solved in O(n2) time.
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