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What is Computational Geometry� Computational geometry is a term claimed by a number
of di�erent groups	 The term was coined perhaps 
rst by Marvin Minsky in his book �Percep�
trons� which was about pattern recognition� and has been used often to describe algorithms
solid�modeling	 But its most widely recognized use is to describe the sub
eld of algorithm
theory that involves the design and analysis of e�cient algorithms for problems involving geo�
metric inputs� primarily in ��� ��� or perhaps consant dimensional spaces	 It primarily involves
straight or �at objects �lines� line segments� polygons� planes� and polyhedra� as opposed to
curves and surfaces	 It is this latter sense of the term that we will be covering in this course	

The 
eld developed rapidly in the late ���s and through the ���s and ���s� and it still continues
to develop	 Because of the area from which it grew �discrete algorithm design�� the 
eld of
computational geometry has always emphasized problems of a discrete mathematic nature	 For
most problems in computational geometry the input is a 
nite set of points or other geometric
objects� and the output is a typically some sort of structure consisting of a 
nite set of points
or line segments	

Here is an example of a typical problem� called the shortest path problem	 Given a set polygonal
obstacles in the plane� 
nd the shortest obstacle�avoiding path from some given start point
to a given goal point	 Although it is possible to reduce this to a shortest path problem on a
graph �called the visibility graph� which we will discuss later this semester�� and then apply a
nongeometric algorithm such as Dijkstra�s algorithm� it seems that by solving the problem in
its geometric domain it should be possible to devise more e�cient solutions	 This is one of the
main reasons for the growth of interest in geometric algorithms	

s t s t

Figure �� Shortest path problem	

The measure of the quality of an algorithm in computational geometry has traditionally been
its asymptotic worst�case running time	 Thus� an algorithm running inO�n� time is better than
one running inO�n logn� time which is better than one running inO�n�� time	 �This particular
problem can be solved in O�n� logn� time by a fairly simple algorithm� and in O�n logn� by
a very complex algorithm	� In some cases average case running time is considered instead	
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However� for many types of geometric inputs it is di�cult to de
ne input distributions that
are both easy to analyze and representative of typical inputs	

There are many 
elds of computer science that deal with solving problems of a geometric
nature	 These include computer graphics� computer vision and image processing� robotics�
computer�aided design and manufacturing� computational �uid�dynamics� and geographic in�
formation systems� to name a few	 One of the goals of computational geometry is to provide
the basic geometric tools needed from which application areas can then build their programs	
There has been signi
cant progress made towards this goal� but it is still far from being fully
realized	

Limitations of Computational Geometry� There are some fairly natural reasons why compu�
tational geometry may never fully address the needs of all these applications areas� and these
limitations should be understood before undertaking this course	 One is the discrete naturea

of computational geometry	 In some sense any problem that is solved on digital computers
must be expressed in a discrete form� but many applications areas deal with discrete approx�
imations to continuous phenomenon	 For example in image processing the image may be a
discretization of a continuous ��dimensional gray�scale function� and in robotics issues of vibra�
tion� oscillation in dynamic control systems are of a continuous nature	 Nonetheless� there are
many applications in which objects are of a very discrete nature	 For example� in geographic
information systems� road networks are discretized into collections of line segments	

The other limitation is the fact that computational geometry deals primarily with straight or
�at objects	 To a large extent� this is a result of the fact that computational geometers were
not trained in geometry� but in discrete algorithm design	 So they chose problems for which
geometry and numerical computation plays a fairly small role	 Much of solid modeling� �uid
dynamics� and robotics� deals with objects that are modeled with curved surfaces	 However� it
is possible to approximate curved objects with piecewise planar polygons or polyhedra	 This
assumption has freed computational geometry to deal with the combinatorial elements of most
of the problems� as opposed to dealing with numerical issues	 This is one of the things that
makes computational geometry fun to study� you do not have to learn a lot of analytic or
di�erential geometry to do it	 But� it does limit the applications of computational geometry	

One more limitation is that computational geometry has focused primarily on ��dimensional
problems� and ��dimensional problems to a limited extent	 The nice thing about ��dimensional
problems is that they are easy to visualize and easy to understand	 But many of the daunting
applications problems reside in ��dimensional and higher dimensional spaces	 Furthmore� issues
related to topology are much cleaner in �� and ��dimensional spaces than in higher dimensional
spaces	

Trends in CG in the ���s and ���s� In spite of these limitations� there is still a remarkable array
of interesting problems that computational geometry has succeeded in addressing	 Throughout
the ���s the 
eld developed many techniques for the design of e�cient geometric algorithms	
These include well�known methods such as divide�and�conquer and dynamic programming�
along with a number of newly discovered methods that seem to be particularly well suited
to geometric algorithm	 These include plane�sweep� randomized incremental constructions�
duality�transformations� and fractional cascading	

One of the major focuses of this course will be on understanding technique for designing
e�cient geometric algorithms	 A major part of the assignments in this class will consist of
designing and�or analyzing the e�ciency of problems of a discrete geometric nature	

However throughout the ���s there a nagging gap was growing between the �theory and
�practice of designing geometric algorithms	 The ���s and early ���s saw many of the open
problems of computational geometry solved in the sense that theretically optimal algorithms
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were developed for them	 However� many of these algorithms were nightmares to implement
because of the complexity of the algorithms and the data structures that they required	 Fur�
thermore� implementations that did exist were often sensitive to geometric degeneracies that
caused them to produce erroneous results or abort	 For example� a programmer designing
an algorithm that computes the intersections of a set of line segments may not consider the
situation when three line segments intersect in a single point	 In this rare situation� the data
structure being used may be corrupted� and the algorithm aborts	

Much of the recent work in computational geometry has dealt with trying to make the the�
oretical results of computational geometry accessible to practioners	 This has been done by
simplifying existing algorithms� dealing with geometric degeneracies� and producing libraries
of geometric procedures	 This process is still underway	 Whenever possible� we will discuss the
simplest known algorithm for solving a problem	 Often these algorithms will be randomized
algorithms	 We will also discuss �hopefully without getting too bogged down in details� some
of the techniques for dealing with degenerate situations in order to produce clean and yet
robust geometric software	

A Grand Overview� Here are some of the topics that we will discuss this semester	

Convex Hulls� Convexity is a very important geometric property	 A geometric set is convex
if for every two points in the set� the line segment joining them is also in the set	 One of
the 
rst problems identi
ed in the 
eld of computational geometry is that of computing
the smallest convex shape� called the convex hull� that encloses a set of points	

Convex hull Polygon triangulation

Figure �� Convex hulls and polygon triangulation	

Intersections� One of the most basic geometric problems is that of determining when two sets
of objects intersect one another	 Determining whether complex objects intersect often
reduces to determining which individual pairs of primitive entities �e	g	� line segments�
intersect	 We will discuss e�cient algorithms for computing the intersections of a set of
line segments	

Triangulation and Partitioning� Triangulation is a catchword for the more general prob�
lem of subdividing a complex domain into a disjoint collection of �simple objects	 The
simplest region into which one can decompose a planar object is a triangle �a tetrahedron

in ��d and simplex in general�	 We will discuss how to subdivide a polygon into triangles
and later in the semester discuss more general subdivisions into trapezoids	

Low�dimensional Linear Programming� Many optimization problems in computational
geometry can be stated in the form of a linear programming problem� namely� 
nd the
extreme points �e	g	 highest or lowest� that satis
es a collection of linear inequalities	
Linear programming is an important problem in the combinatorial optimization� and
people often need to solve such problems in hundred to perhaps thousand dimensional
spaces	 However there are many interesting problems �e	g	 
nd the smallest disc enclosing
a set of points� that can be posed as low dimensional linear programming problems	 In
low�dimensional spaces� very simple e�cient solutions exist	
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Line arrangements and duality� Perhaps one of the most important mathematical struc�
tures in computational geometry is that of an arrangement of lines �or generally the
arrangement of curves and surfaces�	 Given n lines in the plane� an arrangement is just
the graph formed by considering the intersection points as vertices and line segments join�
ing them as edges	 We will show that such a structure can be constructed in O�n�� time	
These reason that this structure is so important is that many problems involving points
can be transformed into problems involving lines by a method of duality	 For example�
suppose that you want to determine whether any three points of a planar point set are
collinear	 This could be determines in O�n�� time by brute�force checking of each triple	
However� if the points are dualized into lines� then �as we will see later this semester�
this reduces to the question of whether there is a vertex of degree greater than � in the
arrangement	

Voronoi Diagrams and Delaunay Triangulations� Given a set S of points in space� one
of the most important problems is the nearest neighbor problem	 Given a point that is not
in S whic point of S is closest to it� One of the techniques used for solving this problem
is to subdivide space into regions� according to which point is closest	 This gives rise to a
geometric partition of space called a Voronoi diagram	 This geometric structure arises in
many applications of geometry	 The dual structure� called a Delaunay triangulation also
has many interesting properties	

Figure �� Voronoi diagram and Delaunay triangulation	

Search� Geometric search problems are of the following general form	 Given a data set �e	g	
points� lines� polygons� which will not change� preprocess this data set into a data struc�
ture so that some type of query can be answered as e�ciently as possible	 For example�
a nearest neighbor search query is� determine the point of the data set that is closest to a
given query point	 A range query is� determine the set of points �or count the number of
points� from the data set that lie within a given region	 The region may be a rectangle�
disc� or polygonal shape� like a triangle	

Course Texts� The text for this course is the excellent new book Computational Geometry�

Algorithms and Applications by de Berg� van Kreveld� Overmars and Schwarzkopf	 Many
of the algorithms� notations� de
nitions� and 
gures will be borrowed from their presen�
tation	 We�ll refer to their book by their initials BKOS	 We�ll also refer to the excellent
algorithms textbook Introduction to Algorithms by Cormen� Leiserson� and Rivest for
basic algorithms and data structures	

Lecture �� Geometric Background and Convex Hulls

�Thursday� Sep �� �����
�Updated� ����pm� Sep �� �����
Reading� Chapter � in BKOS �deBerg� vanKreveld� Overmars and Schwarzkopf�	
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A	ne space� We will usually be rather informal in our presentation of geometry� but it is good to
start things o� on a somewhat formal footing	 We begin with some background on Euclidean
geometry� which is not presented in the text	

There are a number of di�erent geometric systems that one can work under	 This semester
we will be working almost exclusively with Euclidean geometry� although we may introduce a
few concepts from projective geometry later in the semester	 We begin with a short review of
geometry	 Our approach will be di�erent from what is done in most math texts and most com�
putational geometry texts	 The standard approach in math texts is to begin by assuming that
everything is a �tuple of real numbers	 But this approach does lend itself to object�oriented
programming because it blurs the distinction between di�erent geometric elements	 The ap�
proach in computational geometry texts is to say nothing about geometric representations� but
to rely upon an intuitive understanding of geometric concepts	

Rather than de
ning Euclidean geometry we will 
rst de
ne a somewhat more basic geome�
try called a�ne geometry	 Later we will add one operation� called an inner product� which
di�erentiates Euclidean from a�ne geometry	

An a�ne geometry consists of a set of scalars �the real numbers�� a set of points� and a set
of free vectors �or simply vectors�	 Points are used to specify position	 Free vectors are used
to specify direction and magnitude� but have no 
xed position in space	 �This is in contrast
to linear algebra where there is no real distinction between points and vectors	 However this
distinction is useful� since the two are really quite di�erent	�

The following are the operations that can be performed on scalars� points� and vectors	 Vector
operations are just the familiar ones from linear algebra	 It is possible to subtract two points	
The di�erence p � q of two points results in a free vector directed from q to p	 It is also
possible to add a point to a vector	 In point�vector addition p� v results in the point which
is translated by v from p	 The following are the legal operations�

S � V � V scalar�vector multiplication

V � V � V vector addition

P � P � V point subtraction

P � V � P point�vector addition

vector addition

q
u

v

u+v

point subtraction point-vector addition

p
p

p+v

vp-q

Figure �� A�ne operations	

A number of operations can be derived from these	 For example� we can de
ne the subtraction
of two vectors �u��v as �u�������v or scalar�vector division �v�� as �������v provided � �� �	 There
is one special vector� called the zero vector� ��� which has no magnitude� such that �v ��� � �v	

Note that it is not possible to multiply a point times a scalar or to add two points together	
However there is a special operation that combines these two elements� called an a�ne combi�

nation	 Given any scalar � and two points p� and p�� de
ne the a�ne combination A��p�� p�� ��

�



Lecture Notes CMSC �������M

to be�
��� �� � p� � � � p� � p� � � � �p� � p���

Note that the left�hand side of this equation is not legal given our list of operations	 But
this is how the a�ne combination is typically expressed� namely as the weighted average of
two points	 The right�hand side �which is easily seen to be algebraically equivalent� is legal	
An important observation is that� if p� �� p�� then the point A��p�� p�� �� lies on the line
connecting p� and p�� and generally� as � varies from �� to �� it traces out all the points
on this line	

p

q

Aff(p,q,1)

Aff(p,q,1/2)

Aff(p,q,0)

Aff(p,q,-1/2)

Figure �� A�ne combination	

In the special case where � � � � �� A��p�� p�� �� is a point that subdivides the line segment
p�p� into two subsegments of relative sizes � to ���	 When � is in this range� the operation is
called a convex combination� and the set of all convex combinations traces out the line segment
p�p�	

Homogeneous Coordinates� In order to assign coordinates to points and vectors� we assume that
there is a designated standard coordinate system� which is speci
ed by an origin point and d
orthogonal unit vectors	 �In many applications� such as computer graphics and solid modeling�
it is often convenient to de
ne other local coordinate systems	 We will not have much need of
this though	�

To represent vectors and points in a�ne space� we use homogeneous coordinates	 Suppose that
we are working in d�dimensional a�ne space	 It is common to represent both free vectors and
points as �d����tuples of real numbers	 To represent a free vector we take its standard d�tuple
of coordinates an prepend an additional � to the beginning	 To represent a point we take its
d�tuple and prepend an additional �	 �In many application areas� graphics and solid�modeling
in particular� it is common to append the � or � to the end of the tuple	 In principal there
is no reason that one representation is better than the other� but beware that the concept of
orientation de
ned below is reversed in odd dimensions in this case	�

This may sound rather ad�hoc� but it has some very nice algebraic properties	 For example�
if you take the di�erence of two points �which results in a free vector� observe that by simply
subtracting their homogeneous coordinate tuples� component by component� you will get the
proper representation of this free vector �since the 
rst two coordinates will cancel each other
giving ��	 We will sometimes be sloppy	 When it is clear that we are dealing with points� we
may drop the homogenizing coordinate	

Orientation� So far all of the operations map numerical geometric entities into other numerical
entities	 In order to make discrete decisions� we need a geometric operation that is somewhat
analogous to the relational operations ����� �� with numbers	 There does not seem to be
any natural intrinsic way to compare two points in d�dimensional space� but there is a natural
relation between ordered �d � ���tuples of points in d�space� which extends the notion of
relations in ��space� called orientation	
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v

p-q : (1-1, 2-3, 2-0) = (0, -1, 2)

p

q

p-q

: (0, 2, 1)v

: (1, 2, 2)p

: (1, 3, 0)q

Figure �� Homogeneous coordinates	

Given an ordered triple of three points hp� q� ri in the plane� we say that they have positive

orientation if they de
ne a counterclockwise oriented triangle� negative orientation if they
de
ne a clockwise oriented triangle� and zero orientation if they are collinear	 Note that
orientation depends on the order in which the points are given	 In general� given an ordered
��tuple points in ��space� we can also de
ne their orientation as being either positive �forming a
right�handed screw�� negative �a left�handed screw�� or zero �coplanar�	 This can be generalized
to any ordered �d� ���tuple points in d�space	

p

q

p

q

r

rp

r

positive zero negative

q

Figure �� Orientations of the ordered triple �p� q� r�	

Orientation is formally de
ned as the sign of the determinant of the points given in homoge�
neous coordinates	 For example� in the plane� we have

Orient�p� q� r� � det

�
� � px py

� qx qy
� rx ry

�
A �

Observe that in the ��dimensional case� Orient�p� q� is just q� p	 Hence it is positive if p � q�
zero if p � q� and negative if p � q	 Thus orientation generalized ���� � in ��dimensional
space	

Convexity� Now that we have discussed some of the basics� let us consider an initial problem	 The
computation of convex hulls is among the most basic problems in computational geometry	 An
O�n logn� algorithm for computing convex hulls was one of the earliest results in computational
geometry �due to Ron Graham�	

The convex hull can be de
ned intuitively by surrounding a collection of points with a rubber
band and letting the rubber band snap tightly around the points	 There are a number of
reasons that the convex hull of a point set is an important geometric structure	 One is that it
is one of the simplest shape approximations for a set of points	 Also many algorithms compute
the convex hull as an initial stage in their execution� because convex polygons are often easier
to deal with than point sets	 For example� in order to 
nd the smallest rectangle or triangle
that encloses a set of points� it su�ces to 
rst compute the convex hull of the points� and then

nd the smallest rectangle or triangle enclosing the hull	
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Convexity� A set S is convex if given any points p� q � S any convex combination of p and q
is in S� or equivalently� the line segment pq � S	

Convex hull� The convex hull of any set S is the intersection of all convex sets that contains
S� or more intuitively� the smallest convex set that contains S	 Following our book�s
notation� we will denote this CH�S�	

An equivalent de
nition of convex hull is the set of points that can be expressed as convex
combinations of the points in S	 �A proof can be found in any book on convexity theory	� A
convex combination of three or more points is an linear combination of the points in which the
coe�cients sum to � and all the coe�cients are in the interval ��� ��	

In general� convex sets may have either straight or curved boundaries� may be bounded or
unbounded �e	g	 an in
nite cone is convex�� and may be topologically open or closed �that
is� they may or may not contain their boundary�	 The convex hull of a 
nite set of points is
necessarily a bounded� closed� convex polygon	

Convex hull problem� The �planar� convex hull problem is� given a set of n points P in the plane�
output the vertices of the convex hull	 Normally� polygons are presented in counterclockise
order	 For some reason our book outputs the hull in clockwise order� but obviously it is a
trivial matter to convert from one to the other	 The hull should consist only of extreme points�
in the sense that if three points lie on an edge of the convex hull� then the middle point should
not be output as part of the hull	

The book introduces a simple O�n�� convex hull algorithm� which operates by considering each
ordered pair of points �p� q�� and the determining whether all the remaining points of the set
lie within the half�plane lying to the right of the directed line from p to q	 �Observe that this
can be tested using the orientation test	� The question is� can we do better�

Graham�s scan� We will present an O�n logn� algorithm for convex hulls	 It is a simple variation
of a famous algorithm for convex hulls� called Graham�s scan	 This algorithm dates back to the
early ���s	 The algorithm is based on an approach called incremental construction� in which
points are added one at a time� and the hull is updated with each new insertion	 If we were to
add points in some arbitrary order� we would need some method of testing whether points are
inside the existing hull or not	 To avoid the need for this test� we will add points in increasing
order of x�coordinate� thus guaranteeing that each newly added point is outside the current
hull	 �It is not clear that this is necessarily a good thing to do	 After all� if a point is inside
the convex hull� then no update need be made	 Perhaps a better algorithm should seek to add
points in such a way that most of the points that are not on the hull are eliminated quickly
from consideration	 Nonetheless Graham�s scan is easy to implement� and is optimal in the
worst case� so it is not a bad algorithm by any means	�

Since we are working from left to right� it would be convenient if the convex hull vertices were
also ordered from left to right	 The convex hull is a cyclically ordered sets	 Cyclically ordered
sets are somewhat messier to work with than simple linearly ordered sets� so we will break the
hull into two hulls� an upper hull and lower hull	 The break points common to both hulls will
be the leftmost and rightmost vertices of the convex hull	 After building both� the two hulls
are merged into a single cyclic list	

Let us consider the upper hull� since the lower hull is symmetric	 Let hp�� p�� � � � � pni denote
the set of points� sorted by increase x�coordinates	 As we walk around the upper hull from left
to right� observe that each consecutive triple along the hull makes a right�hand turn	 That
is� if p� q� r are consecutive points along the upper hull� then Orient�p� q� r� � �	 When a new
point pi is added to the current hull� this may violate the right�hand turn invariant	 So we
check the last three points on the upper hull� including pi	 They fail to form a right�hand turn�
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p
n

p
1

p
i

Upper hull

Lower hull

Figure �� Convex hulls and Graham�s scan	

then we delete the point prior to pi	 This is repeated until the number of points on the upper
hull �including pi� is less than three� or the right�hand turn condition is reestablished	 See the
text for a complete description of the code	 We have ignored a number of special cases	 We
will consider these next time	

Analysis� Let us prove the main result about the running time of Graham�s scan	

Theorem� Graham�s scan runs in O�n logn� time	

Proof� Sorting the points according to x�coordinates can be done by any e�cient sorting
algorithm in O�n logn� time	 For each point added� the amount of time spent is clearly
O�Di � ��� where Di is the number of points deleted in the process of adding point pi	
The reason is that each orientation test takes constant time� and we must perform one
orientation test for each point deleted� perhaps along with one extra one �for the last point
which is not deleted�	 Thus� the total running time is proportional to

Pn
i���Di � �� �

n�
Pn

i��Di	 How large is
P

iDi� Observe that once a point is deleted� it can never be
deleted again	 Since each of n points can be deleted at most once�

P
iDi � n	 Thus after

sorting� the total running time is O�n�	 Since this is true for the lower hull as well� the
total time is O��n� � O�n�	

Lecture �� More Convex Hulls

�Tuesday� Sep �� �����
Reading� Chapter � in BKOS	

Degeneracies� Last time we presented the Graham�s scan algorithm for computing convex hulls	
Recall that the algorithm computes just the upper and lower hulls of a set of n points each
in O�n logn� time	 The method is an incremental algorithm that adds points to the hull in
increasing order of x�coordinate	

One of the issues that we neglected to deal with was that of degenerate inputs	 A degeneracy
is somewhat hard to de
ne formally� but a working de
nition is that� a degeneracy is any
special con
guration �of points� lines� etc� that will be broken �with very high probability�
if the objects� de
ning coordinates are randomly perturbed	 For example� three points form
a degeneracy �in all dimensions strictly higher than �� since any perturbation of any their
coordinates will cause the orientation test to become nonzero	

Of course� we are only interested in degeneracies that a�ect the algorithm of interest	 A
functional de
nition of degeneracy is any con
guration of points that causes a sign test based
on real values �such as the orientation test� to return a zero value	

Let us begin by assuming that we perform all sign tests using exact arithmetic	 There are two
places in Graham�s algorithm where degeneracies might arise	 The 
rst is that in sorting the
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points by their x�coordinates� there may be two points with the same x�coordinate	 The second
is when adding a point pi and testing the last three consecutive points for the right�hand turn
condition� the three points may be collinear	

For the case of equal x�coordinates� there is a very simple method for dealing with this� that is
well worth remembering	 We will imagine that an in
nitesimal perturbation has been applied
to the points	 Such a perturbation should have the property of destroying degeneracies� but
creating no new degeneracies	 For example� to break ties in x�coordinates we could apply a
small rotation of the plane	

After perturbationBefore perturbation

Figure �� Perturbation to eliminate degeneracies	

If we rotate too much� we might create a new tie among x�coordinates	 How small is small
enough� How much numerical precision is needed� The trick is that we do not actually
compute the perturbation numerically	 Instead we perform the computation on the original
exact inputs� but make all decisions as if this rotation had been applied	 This technique� of
simulating a perturbation is called symbolic perturbation	

For example� suppose that we rotate all the points in
nitesimally clockwise about the origin
of the coordinate system	 If two points had the same x�coordinate prior to the rotation� then
the one with the larger y�coordinate will have the larger x�coordinate after the rotation	 Since
the rotation is in
nitesimal �in
nitely small� then no new ties amongst x�coordinates will be
created	 To simulate the perturbation� we simply sort the points lexicographically� 
rst by
x�coordinate� and then amongst points with the same x�coordinate� by y�coordinate	 They
key is that the points have not actually been rotated numerically� but the algorithm behaves
as if they had been	

We could have perturbed the points by a counterclockwise rotation as well� either would be

ne	 This perturbation also takes care of the question of where the upper hull ends and the
lower hull begins if there are ties for the leftmost and rightmost points	

To deal with three collinear points� observe that since the points are sorted by x�coordinate
as we visit them� the middle point of any such triple should not be considered as lying on
the hull	 So when implementing the right�hand turn condition� we should require that it is a
�strict right�hand turn otherwise the middle point is deleted	

If we were to use �oating point arithmetic� the best we could hope for is an approximation
to the convex hull� in the sense that if that the hull we output would be the correct hull for
some small perturbation of the input	 When dealing with �oating point computation� the
most important goal is that numerical errors should never cause the program to produce an
output that is structurally unsound	 For convex hulls this is not too complex	 However� for
other geometric problems it may be quite hard to devise an algorithm that insensitive to small
numerical errors	
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Quickhull� To show that there is not just one way to compute planar convex hulls� let us consider
some other approaches	 The 
rst is called quickhull� and can be viewed as a ��dimensional
generalization of quicksort	

Like quicksort� this algorithm runs in O�n logn� time for favorable inputs but can take as long
as O�n�� time for unfavorable inputs	 However� unlike quicksort� there is no obvious way to
convert it into a randomized algorithm with O�n logn� expected running time	 Nonetheless�
quickhull tends to perform very well in practice	

The intuition is that in many applications most of the points lie in the interior of the hull	 For
example� if the points are uniformly distributed in a unit square� then the expected number of
points on the convex hull is O�logn�	 Here is a proof	

Theorem� Suppose that n points are uniformly distributed in a unit square	 The expected
number of points on the convex hull is O�logn�	

Proof� First� we will break the hull into four parts� the upper�left� upper�right� lower�left� and
lower�right hulls	 This is done by breaking the hull at its leftmost� rightmost� topmost
and bottommost points	 We will show that each has O�logn� points	 By symmetry� we
may consider one� say the upper�right hull	

Rather than bounding the number of points on the hull� we will bound a larger quantity	
A point pi � �xi� yi� is said to be dominated by another point pj if xj 	 xi and yj 	 yi	
The maxima of a point set P are the points that are not dominated by any other point
in P 	 Intuitively� the maxima form a staircase along the upper�right side of the point set	
Observe that the set of maxima is a superset of the points on the upper�right hull� so an
upper bound on the number of maxima is an upper bound on the number of points in
the upper�right hull	

Maxima

Upper-right hull

Figure ��� Upper�right hull and maxima	

Suppose that the points are sorted in decreasing order of x�coordinate	 We will assume
that all points have distinct coordinates to simplify things	 Clearly pi is a maximum if
and only if pi has the largest y�coordinate among the subset fp�� p�� � � � � pig	 What is
the probability that this is true� The y�coordinates of these points are independent from
each other	 Therefore the probability that pi has the largest y�coordinate is just ��i	

Thus� each point pi is a maxima with probability ��i	 The expected number of maxima
is�

En �
nX
i��

�

i

 lnn � O�logn��

�The sum is the harmonic series� see Cormen� Leiserson� and Rivest� if you haven�t seen
this	� From the comments made earlier it follows that the expected number of points on
all the hulls is at most � times this quantity� which is O�logn�	
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The idea behind quickhull is to discard points that are not on the hull as quickly as possi�
ble	 QuickHull begins by computing the points with the maximum and minimum� x� and
y�coordinates	 Clearly these points must be on the hull	 Horizontal and vertical lines passing
through these points are support lines for the hull� and so de
ne a bounding rectangle� within
which the hull is contained	 Furthermore� the convex quadrilateral de
ned by these four points
lies within the convex hull� so the points lying within this quadrilateral can be eliminated from
further consideration	 All of this can be done in O�n� time	

discard these

Figure ��� Quickhull�s initial quadrilateral	

To continue the algorithm� we classify the remaining points into the four corner triangles
that remain	 In general� as this algorithm executes� we will have an inner convex polygon�
and associated with each edge we have a set of points that lie �outside of that edge	 �More
formally� these points are witnesses to the fact that this edge is not on the convex hull� because
they lie outside the half�plane de
ned by this edge	� When this set of points is empty� the edge
is a 
nal edge of the hull	 Consider some edge ab	 Assume that the points that lie �outside
of this hull edge have been placed in a bucket that is associated with ab	 Our job is to 
nd
a point c among these points that lies on the hull� discard the points in the triangle abc� and
split the remaining points into two subsets� those that lie outside ac and those than lie outside
of cb	 We can classify each point by making two orientation tests	

a

bb

a

c

discard these

Figure ��� Quickhull elimination procedure	

How should c be selected� There are a number of possible selection criteria that one might
think of	 The suggested method is that c be the point that maximizes the perpendicular
distance from the line ab	 �Another possible choice might be the point that maximizes the
angle cba or cab	 It turns out that these are poor choices because they do not produce even
splits of the remaining points	� We replace the edge ab with the two edges ac and cb� and
classify the points as lying in one of three groups� those that lie in the triangle abc� which are
discarded� those that lie outside of ac� and those that lie outside of cb	 We put these points in
buckets for these edges� and recurse	 �We claim that it is not hard to classify each point p� by
computing the orientations of the triples acp and cbp	�

The running time of quickhull� as with quicksort� depends on how evenly the points are split
at each stage	 Let T �n� denote the running time on the algorithm assuming that n points
remain outside of some edge	 In O�n� time we can select a candidate splitting point c and
classify the points in the bucket in O�n� time	 Let n� and n� denote the number of remaining
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points	 Then the running time is given by the recurrence�

T ��� � �

T �n� � T �n�� � T �n�� � n�

To solve the recurrence� it would be necessary to determine the expected values of �n�� n���
which would depend on the point distribution	 If we assume that the points are evenly dis�
tributed� in the sense that max�n�� n�� � �n for some constant � � �� then by applying the
same analysis as that used in quicksort �see Cormen� Leiserson� Rivest� the running time will
solve to O�n logn� �where the constant factor depends on ��	

Does quickhull outperform Graham�s scan� This depends to a great extent on the distribution
of the point set	 There are variations of quickhull that are designed for speci
c point distribu�
tions �e	g	 points uniformly distributed in a square� and their authors claim that they manage
to eliminate almost all of the points in a matter of only a few iterations	

Other convex hull algorithms� There are still other convex hull algorithms	 A natural question
to ask is whether it is possible to improve on O�n logn�� In fact� it is possible to show that
any algorithm for convex hulls must at least sort the points along the hull	 �We�ll leave this as
an exercise	� In the worst case� the hull has n points� and so this implies an ��n logn� lower
bound	

But if you know or expect fewer points on the hull� then you may be able to do much better	
For example� if your inputs consist of points uniformly distributed in a square� then you expect
the number of points on the hull to be only O�logn�	 Is it possible to 
nd a better algorithm
in this case� An algorithm that takes into consideration both the input and output size is
called an output sensitive algorithm	 Let n denote the number of input points and h denote
the number of edges on the convex hull	

There is an algorithm called Jarvis�s march which builds the hull in O�nh� time by a process
called �gift�wrapping	 In O�n� time it is possible to 
nd the �next edge on the hull� and
this algorithm operates by walking around the hull one edge at a time	 But this gives no
improvement for the case of uniformly distributed points in the square	 Nonetheless� many of
the most practical higher dimensional convex hull algorithms are based on this approach	

There exists an O�n logh� time algorithm for the convex hull problem� and it can be shown
that this algorithm is optimal with respect to output sensitive algorithms	 The 
st algorithm
with this complexity was discovered back in the mid �����s	 But recently� in ����� a much
simpler algorithm was discovered	

Lecture �� Line Segment Intersection

�Thursday� Sep ��� �����
Revised� Sept ��	 �Fixed the analysis	�
Reading� Chapter � in BKOS	

Geometric intersections� One of the most basic problems in computational geometry is that of
computing intersections	 Intersection computation is basic to many di�erent application areas	

� In solid modeling people often build up complex shapes by applying various boolean
operations �intersection� union� and di�erence� to simple primitive shapes	 The process
in called constructive solid geometry �CSG�	 In order to perform these operations� the most
basic step is determining the points where the boundaries of the two objects intersect	
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� In robotics and motion planning it is important to know when two objects intersect for
collision detection and collision avoidance	

� In geographic information systems it is often useful to overlay two subdivisions �e	g	 a
road network and county boundaries to determine where road maintenance responsibilities
lie�	 Since these networks are formed from collections of line segments� this generates a
problem of determining intersections of line segments	

� Another example comes from computer graphics	 The clipping problem involves deter�
mining what parts of a set of polygons are visible through a rectangular window	 This
involves determining the intersection of the polygons and the window� and then clipping
the polygons at these points	

Line segment intersection� The problem that we will consider is� given n line segments in the
plane� report all points where a pair of line segments intersect	 We assume that each line
segment is represented by giving the coordinates of its two endpoints	

Observe that n line segments can intersect in as few as � and as many as �
�
n
�

�
� � O�n��

di�erent intersection points	 We could settle for an O�n�� algorithm� claiming that it is worst�
case asymptotically optimal� but it would not be very useful in practice� since in many instances
of intersection problems intersections may be rare	 Therefore it seems reasonable to look for
an output sensitive algorithm� that is� one whose running time should be e�cient both with
respect to input and output size	

We will let I denote the number of intersections	 How should we count I in the degenerate
con
guration where three or more lines intersect in a single point� If k lines intersect in a
single point� one might think of this as a single intersection point� or one might interpret
this as �

�
k
�

�
� � k�k � ���� pairwise intersections	 The former interpretation would lead to

faster running times� and so would be the goal of a careful implementation	 �And indeed the
implementation in the book achieves this	� On the other hand� one might argue that such
degeneracies are rare in practice� and so it is not worth worrying about	 We will take the
latter �sloppier� attitude� and refer to the text for a more careful implementation	

Complexity� We will present a �not quite optimal� O�n logn� I logn� time algorithm for the line
segment intersection problem	 A natural question is whether this is optimal	

The best that one might hope for is O�n logn� I� time algorithm	 Clearly we need O�I� time
to output the intersection points	 What is not so obvious is that O�n logn� time is needed	
This results from the fact that the following problem is known to require ��n logn� time	

Element uniqueness� Given a list of n numbers� does any number appear at least twice in
the list	

�Note that element uniqueness can be solved inO�n logn� time by sorting and checking whether
adjacent elements are equal	� Given this lower bound� even determining whether the same
endpoint is used in two di�erent line segments would require ��n logn� time� and hence this
is a lower bound for determining even the existence of a single intersection	

Note that this lower�bound result assumes the algebraic decision tree model of computation�
in which all decisions are made by comparisons made based on exact algebraic operations
����� �� �� applied to numeric inputs	 Although this encompasses most of what one would
consider to be �normal geometric computations� there are alternative models of computation	
For example� by taking mods� �oors� or ceilings� you would be able to implement hashing	
�This is a data access method taught in most data structures and algorithms courses	 See
Cormen� Leiserson� and Rivest� for example	� With hashing it is possible to solve the element
uniqueness in expected O�n� time	 Unfortunately� even in this more powerful computational
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model� no one know how to determine whether any two line segments intersect in faster than
O�n logn� I� time in the worst case	

Later in the semester we will discuss an optimalO�n logn�I� time algorithm for this problem	

Line segment intersection� In rather typical computational geometry fashion� our book does not
discuss the issue of how to determine the intersection point of two line segments	 Let ab and
cd be two line segments� given by their endpoints	 It is an easy exercise to determine whether

these line segments intersect� simply by applying an appropriate combination of orientation
tests	

To determine the coordinates of the intersect point involves solving a small system of equations	
The most natural way to set up this computation is to introduce the notion of a parametric

representation of the line segment	 Recall that any point on the line segment ab can be written
as a convex combination involving a real parameter s�

p�s� � �� � s�a � sb for � � s � ��

Similarly for cd we may introduct a parameter t�

q�t� � ��� t�c� td for � � s � ��

An intersection occurs if and only if we can 
nd s and t such that p�s� � p�t�	 Thus we get
the two equations�

��� s�ax � sbx � ��� t�cx � tdx

��� s�ay � sby � ��� t�cy � tdy�

The coordinates of the points are all known� so it is just a simple exercise in linear algebra
to solve for s and t	 The computation of s and t will involve a division	 If the divisor is
�� this corresponds to the case where the line segments are parallel �and possibly collinear�	
These special cases should be dealt with carefully	 If the divisor is nonzero� then we get values
for s and t as rational numbers �the ratio of two integers�	 We can approximate them as
�oating point numbers� or if we want to perform exact computations it is possible to simulate
rational number algebra exactly using high�precision integers �and multiplying through by
least common multiples�	 Once the values of s and t have been computed all that is needed is
to check that both are in the interval ��� ��	

Plane Sweep Algorithm� Let S � fs�� s�� � � � � sng denote the line segments whose intersections
we wish to compute	 The method is called plane sweep	 Here are the main elements of any
plane sweep algorithm� and how we will apply them to this problem�

Sweep line� We will simulate the sweeping of a vertical line 	� called the sweep line from left
to right	 �Our text uses a horizontal line� but there is obviously no signi
cant di�erence	�
We will maintain the line segments that intersect the sweep line in sorted order �say from
top to bottom�	

Events� Although we might think of the sweep line as moving continuously� we only need to
update data structures at points of some signi
cant change in the sweep�line contents�
called event points	

Di�erent applications of plane sweep will have di�erent notions of what event points
are	 For this application� event points will correspond to instances where the sweep line
encounters an endpoints of a line segment �which are all known in advance� and when the
sweep line encounters an intersection point of two line segments �which will be discovered
as the algorithm executes�	
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Event updates� When an event is encountered� we must update the data structures associ�
ated with the event	 It is a good idea to be careful in specifying exactly what invariants
you intend to maintain	 For example� when we encounter an intersect point� we must
interchange the order of the intersecting line segments along the sweep line	

There are a great number of nasty special cases that complicate the algorithm and obscure the
main points	 We will make a number of simplifying assumptions for now	

��� No line segment is vertical	 �Easily 
xed through a symbolic perturbation	�

��� If two segments intersect� then they intersect in a single point �that is� they are not
collinear�	

��� No three lines intersect in a common points	

l

intersections detected

future event points

Figure ��� Plane sweep	

Detecting intersections� We mentioned that endpoint events are all known in advance	 But how
do we detect intersection events	 It is important that each event be detected before the actual
event occurs	 Our strategy will be as follows	 Whenever two line segments become adjacent
along the sweep line� we will check whether they have an intersection occuring to the right of
the sweep line	 If so� we will add this new event	

A natural question is whether this is su�cient	 In particular� if two line segments do intersect�
is there necessarily some prior placement of the sweep line such that they are adjacent	 Happily�
this is the case� but it requires a proof	

Lemma� Given two segments si and sj� which intersect in a single point p �and assuming no
other line segment passes through this point� there is a placement of the sweep line prior
to this event� such that si and sj are adjacent along the sweep line �and hence will be
tested for intersection�	

Proof� Consider such a pair of segments� and assume that prior to this� all intersections
have been correctly handled by the algorithm �thus the sweep line order prior to their
intersection is correct�	 Consider the contents of the sweep line immediately prior to this
event	 We claim that at this time there could be no segment sk between si and sj along
the sweep line	 If there were� then either there would have to be endpoint of sk prior to
the intersection �implying this was not the event immediately prior to the intersection� or
that sk intersects either si or sj �again implying the existence of an intermediate event�	

Data structures� In order to perform the sweep we will need two data structures	
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l

si

sj

sk

Figure ��� Correctness of plane sweep	

Event queue� This holds the set of future events� sorted according to increasing x�coordinate	
Each event contains the auxiliary information of what type of event this is �segment
endpoint or intersection� and which segment�s� are involved	 The operations that this
data structure should support are inserting an event �if it is not already present in the
queue� and extracting the minimum event	

It seems like a heap data structure would be ideal for this� since it supports insertions
and extract�min in O�logM � time� where M is the number of entries in the queue	 �See
Cormen� Leiserson� and Rivest for details�	 However� a heap cannot support the operation
of checking for duplicate events	

There are two ways to handle this	 One is to use a more sophisticated data structure� such
as a balanced binary tree or skip�list	 This adds a small constant factor� but can check
that there are no duplicates easily	 The second is use the heap� but when an extraction
is performed� you may have to perform many extractions to deal with multiple instances
of the same event	 Our book recommends the prior solution	

If events have the same x�coordinate� then we can handle this easily through a symbolic
perturbation by sorting them lexicographically by �x� y�	 This has the same e�ect as
imagining that the sweep line is rotated in
nitesimally counterclockwise	

Sweep line status� To store the sweep line status� we maintain a balanced binary tree or
perhaps a skiplist whose entries are pointers to the line segments� stored in decreasing
order of y�coordinate along the current sweep line	

Normally when storing items in a tree� the key values are constants	 Since the sweep
line varies� we need �variable keys	 To do this� let us assume that each line segment
computes a line equation y � mx � b as part of its representation	 The �key value in
each node of the tree is a pointer to a line segment	 To compute the y�coordinate of some
segment at the location of the current sweep line� we simply take the current x�coordinate
of the sweep line and plug it into the line equation for this line	

The operations that we need to support are those of deleting a line segment� inserting a
line segment� swapping the position of two line segments� and determining the immediate
predecessor and successor of any item	 Assuming any balanced binary tree or a skiplist�
these operations can be performed in O�logn� time each	

The Complete Algorithm� We can now present the complete plane�sweep algorithm	

��� Initially� we insert all of the line segment endpoints into the event queue	 The initial
sweep status is empty	

��� While the event queue is nonempty� extract the next event in the queue	 There are three
cases� depending on the type of event�
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Segment left endpoint� Insert this line segment into the sweep line status� based on the
y�coordinate of this endpoint and the y�coordinates of the other segments currently
along the sweep line	 Test for intersections with the segment immediately above and
below	

Segment right endpoint� Delete this line segment from the sweep line status	 For the
entries immediately preceding and succeeding this entry� test them for intersections	

Intersection point� Swap the two line segments in order along the sweep line	 For the
new upper segment� test it against its predecessor for an intersection	 For the new
lower segment� test it against its successor for an intersection	

Analysis� The work done by the algorithm is dominated by the time spent updating the various
data structures �since otherwise we spend only constant time per sweep event�	 We need to
count two things� the number of operations applied to each data structure and the amount of
time needed to process each operation	

For the sweep line status� there are at most n elements intersecting the sweep line at any time�
and therefore the time needed to perform any single operation is O�logn�� from standard
results on balanced binary trees	

Since we do not allow duplicate events to exist in the event queue� the total number of elements
in the queue at any time is at most �n � I	 Since we use a balanced binary tree to store the
event queue� each operation takes time at most logarithmic in the size of the queue� which is
O�log��n� I��	 Since I � n�� this is at most O�logn�� � O�� logn� � O�logn� time	

Each event involves a constant number of accesses or operations to the sweep status or the
event queue� and since each such operation takes O�logn� time from the previous paragraph�
it follows that the total time spent processing all the events from the sweep line is

O���n� I� log n� � O��n� I� logn� � O�n logn� I logn��

Thus� this is the total running time of the plane sweep algorithm	

Lecture �� DCEL�s and Subdivision Intersection

�Tuesday� Sep �	� �����
Revised� Sep ��	 �Augmented Figure � with alternative view	�
Reading� Chapter � in BKOS	

Topological Information� In most applications of segment intersection problems� we are not in�
terested in just a listing of the segment intersections� but want to know how the segments are
connected together	 Typically� the plane has been subdivided into regions� and we want to
store these regions in a way that allows us to reason about their properties e�ciently	

This leads to the concept of a planar subdivision �or what might be called a cell complex in
topology�	 A planar subdivision is de
ned by a graph with straight�line edges embedded in
the plane so that no two edges intersect� except possibly at their endpoints	 �The condition
that the edges be straight line segments may be relaxed to allow curved segments� but we
will assume line segments here	� This naturally subdivides the plane into regions	 The ��
dimensional vertices� ��dimensional edges� and ��dimensional faces	 We consider these three
types of objects to be disjoint� implying each edge is topologically open �it does not include it
endpoints� and that each face is open �it does not include its boundary�	 There is always one
unbounded face� that stretches to in
nity	 Note that the underlying planar graph need not be
a connected graph	 In particular� faces may contain holes �and these holes may contain other
holes	
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face

edge

vertex

Figure ��� Planar straight�line subdivision	

Planar subdivisions will form the basic objects of many di�erent structures that we will discuss
later this semester �triangulations and Voronoi diagrams in particular� so this is a good time to
consider them in greater detail	 The 
rst question is how should we represent such structures
so that they are easy to manipulate and reason about	 For example� at a minimum we would
like to be able to list the edges that bound each face of the subdivision in cyclic order� and we
would like to be able to list the edges that surround each vertex	

Planar graphs� There are a number of important facts about planar graphs that we should discuss	
Generally speaking� an �undirected� graph is just a 
nite set of vertices� and collection of
unordered pairs of distinct vertices called edges	 A graph is planar if it can be drawn in the
plane �the edges need not be straight lines� so that no two distinct edges cross each other	 An
embedding of a planar graph is any such drawing	 In fact� in specifying an embedding it is
su�cient just to specify the counterclockwise cyclic list of the edges that are incident to each
vertex	 Since we are interested in geometric graphs� our embeddings will contain complete
geometric information �coordinates of vertices in particular�	

There is an important relationship between the number of vertices� edges� and faces in a planar
graph �or more generally an embedding of any graph on a topological ��manifold� but we will
stick to the plane�	 Let V denote the number of vertices� E the number of edgs� F the number
of faces in a connected planar graph	 Euler�s formula states that

V �E � F � ��

If we allow the graph to be disconnected� and let C denote the number of connected compo�
nents� then we have the more general formula

V �E � F �C � ��

In our example above we have V � ��� E � ��� F � � and C � �� which clearly satis
es this
formula	 An important fact about planar graphs follows from this	

Theorem� A straight�line planar graph with n vertices has O�n� edges and O�n� faces	

Proof� Since the graph is a straight�line graph� there cannot be multiple edges between the
same pair of vertices� and there cannot be self�loop edges	 We will prove the theorem in
the more general setting of planar graphs without these types of edges	

First� we will modify the graph in a way that it is still planar� but no more edges can
be added	 This modi
cation will only increase the number of edges and faces	 If the
graph is disconnected� then add an edge between vertices in two di�erent components�
thus reducing the number of connected components by one and possibly increasing the
number of edges and possibly the number faces each by one	 Repeat until the graph is
connected	
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Next� if any face has more than three edges� then add an edge through this face� thus
increasing the number of edges and faces each by one	 �This cannot generally be done
without adding curved lines� unless if there are more than three vertices on the convex
hull of the vertex set	 But since we are not requiring that this be a straight�line planar
graph this is not an issue	�

Figure ��� Modi
ed planar graph	

Let E� 	 E and F � 	 F denote the number edges and faces in the modi
ed graph	
The resulting graph has the property that it has one connected component� every face is
bounded by exactly three edges� and each edge has a di�erent face on either side of it	
�The last claim involves a little thought	�

If we count the number of faces and multiply by �� then every edge will be counted exactly
twice� once by the face on either side of the edge	 Thus� �F � � �E�	 Euler�s formula states
that V �E� � F � � �	 Using the fact that E� � �F ��� we have�

V � �F �

�
� F � � �  F � F � � ��V � ���

and using the face that F � � �E��� we have

V �E� �
�E�

�
� �  E � E� � ��V � ���

Thus� the number of faces is at most ��V ��� and the number of edges is at most ��V ���	

There are a number of reasonable representations that are used in practice	 The most widely
used on is the winged�edge data structure	 Unfortunately� it is probably also the messiest	
There is another called the quad�edge data structure which is quite elegant� and has the nice
property of being self�dual	 �We will discuss duality later in the semester	� We discuss a simple
and relatively elegant data structure called a doubly�connected edge list �or DCEL�	

Doubly�connected Edge List� Like most representations for planar graphs� the DCEL is an edge�
based representation� but vertex and face information is also included for whatever geometric
application is using the data structure	 There are three sets of records �which may be rep�
resented either as arrays or linked lists� as you prefer�� a set of vertex records� a set of edge
records� and a set of face records	 Each undirected edge is represented by two directed edges
�which our book calls half edges�	 Here is what each record contains for the data structure	

We will make a simplifying assumption that faces do not have holes inside of them	 This
assumption can be satis
ed by introducing some number of dummy edge joining each hole
either to the outer boundary of the face� or to some other hole that has been connected to
the outer boundary in this way	 Our text does not make this assumption� and so presents a
somewhat more general data structure	 How to add these dummy edges is left as an exercise	
With this assumption� it may be assumed that the edges bounding each face form a single
cyclic list	
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Vertex� Each vertex stores its coordinates� along with a pointer to any incident directed edge
that has this vertex as its origin� v�inc edge	

Edge� Each undirected edge is represented as two directed edges	 Each edge has a pointer
to the oppositely directed edge� called its twin	 Each directed edge has an origin and
destination vertex	 Each directed edge is associate with two faces� one to its left and one
to its right	

We store a pointer to the origin vertex e�org �we can access the destination as the origin
of the twin edge�	 We store a pointer to the face to the left of the edge e�left �we can
access the face to the right from the twin edge�	 This is called the incident face	 We also
store the next and previous directed edges in counterclockwise order about the incident
face� e�next and e�prev� respectively	

Face� Each face f stores a pointer to a single edge for which this face is the incident face�
f�inc edge	 �See the text for the more general case of dealing with holes	�

DCEL Alternative view

e

e.twin
e.org

e.prev

e.left

e.next

Figure ��� Doubly�connected edge list	

The 
gure shows two ways of visualizing the DCEL	 One is in terms of a collection of doubled�
up directed edges	 An alternative way of viewing the data structure that gives a better sense
of the connectivity structure is based on covering each edge with a two element block� one for
e and the other for its twin	 The next and prev pointers provide links around each face of
the polygon	 The next pointers are directed counterclockwise around each face and the prev
pointers are directed clockwise	

Of course� in addition the data structure may be enhanced with whatever application data is
relevant	 In some applications� it is not necessary to know either the face or vertex information
�or both� at all� and if so these records may be deleted	 See the book for a complete example	

For example� suppose that we wanted to enumerate the vertices that lie on some face f 	 Here
is the code�

Vertex enumeration using DCEL

enumerate�vertices�Face f� �

Edge start � f�inc�edge�

Edge e � start�

do �

output e�org�

e � e�next�

	 while �e 
� start��

	

��
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Merging subdivisions� Let us return to the applications problem that lead to the segment inter�
section problem	 Suppose that we have two planar subdivisions� S� and S�� and we want to
compute their overlay	 In particular� this is a subdivision whose vertices are the union of the
vertices of each subdivision and the points of intersection of the line segments in the subdivi�
sion	 �Because we assume that each subdivision is a planar graph� the only new vertices that
could arise will arise from the intersection of two edges� one from S� and the other from S�	�
Suppose that each subdivision is represented using a DCEL	 Can we adapt the plane�sweep
algorithm to generate the DCEL of the overlaid subdivision�

The answer is yes	 Furthermore� if we will not be needing the original subdivisions� it is
possible to do this by modifying the existing subdivisions	 �If not� then the process begins by
making a copy of each	� The 
rst part of the problem is straightforward� but perhaps a little
tedious	 This part consists of building the edge and vertex records for the new subdivision	 The
second part involves building the face records	 It is more complicated because it is generally
not possible to know the face structure at the moment that the sweep is advancing� without
looking �into the future of the sweep to see whether regions will merge	 �You might try to
convince yourself of this	� The entire subdivision is built 
rst� and then the face information
is constructed and added later	 We will skip the part of updating the face information �see
the text�	

For the 
rst part� the most illustrative case arises when the sweep is processing an intersection
event	 In this case the segments come from the two di�erent subdivisions	 The process involves
the following steps �and is illustrated in the 
gure�	

��� Create a new vertex v at the intersection point	

��� Let a� and b� denote the edges that intersect� oriented from left to right across the sweep
line	 We split each of the two intersecting edges� by adding a vertex at the intersection
point	 Let a� and b� be the new edge pieces	 They are created by the calls Split�a��

a�� and Split�b�� b��� where the procedure is given below	 This procedure creates the
new edge� links it into place� and then returns the newly created edge	 After this the
edges have been split� but they are not linked to each other	 The edge constructor is
given the origin and destination of the new edge	 �We will not give the details	 Also note
that the destination of a�� that is the origin of a��s twin must be updated� which we have
omitted	�

This procedure creates both the new edge and its twin	 The procedure a��dest returns
the destination of a�� which is equivalent to a��twin�org	

Split�edge �a� edge �a�� � �� a� is returned

a� � new edge�v a��dest���� �� create edge �va��dest�

a��next � a��next� a��next�prev � a��

a��next � a�� a��prev � a��

a�t � a��twin� a�t � a��twin� �� the twins

a�t�prev � a�t�prev� a�t�prev�next � a�t�

a�t�prev � a�t� a�t�next � a�t�

	

��� Link the four edges together	

Splice�edge �a� edge �a� edge �b� edge �b�� �

a�t � a��twin� a�t � a��twin� �� find the twins

b�t � b��twin� b�t � b��twin�

a��next � b�� b��prev � a�� �� link the edges together

b�t�next � a�� a��prev � b�t�

a�t�next � b�t� b�t�prev � a�t�

��
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b��next � a�t� a�t�prev � b��
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Figure ��� Updating the DCEL	

Lecture 	� Polygon Triangulation

�Thursday� Sep �
� �����
Revised� Sep ��	 �Moved last section to Lecture �	�
Reading� Chapter � in BKOS	

Simple Polygons� Today we begin study of the problem of triangulating polygons	 We introduce
this problem by way of a cute example in the 
eld of combinatorial geometry	

We begin with some de
nitions	 A polygonal curve is a 
nite sequence of line segments�
called edges joined end�to�end	 The endpoints of the edges are vertices	 For example� let
v�� v�� � � � � vn denote the set of n � � vertices� and let e�� e�� � � � � en denote a sequence of n
edges� where ei � vi��vi	 A polygonal curve is closed if the last endpoint equals the 
rst
v� � vn	 A polygonal curve is simple if it is not self�intersecting	 More precisely this means
that each edge ei does not intersect any other edge� except for the endpoints it shares with its
adjacent edges	

The famous Jordan curve theorem states that every simple closed plane curve divides the plane
into two regions �the interior and the exterior�	 �Although the theorem seems intuitively
obvious� it is quite di�cult to prove	� We de
ne a polygon to be the region of the plane
bounded by a simple� closed polygonal curve	 The term simple polygon is also often used to
emphasize the simplicity of the polygonal curve	 We will assume that the vertices are listed in
counterclockwise order around the boundary of the polygon	

��
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Figure ��� Polygonal curves

Art Gallery Problem� We say that two points x and y in a simple polygon can see each other
�or x and y are visible� if the open line segment xy lies entirely within the interior of P 	

If we think of a polygon as the �oor plan of an art gallery� consider the problem of where to
place �guards� and how many guards to place� so that every point of the gallery can be seen
by some guard	 Victor Klee posed the following question� Suppose we have an art gallery
whose �oor plan can be modeled as a polygon with n vertices	 As a function of n� what is
the minimum number of guards that su�ce to guard such a gallery� Observe that are you are
told about the polygon is the number of sides� not its actual structure	 We want to know the
fewest number of guards that su�ce to guard all polygons with n sides	

A polygon requiring n/3 guards.A guarding set

Figure ��� Guarding sets	

Before getting into a solution� let�s consider some basic facts	 Could there be polygons for
which no 
nite number of guards su�ce� It turns out that the answer is no� but the proof is
not immediately obvious	 You might consider placing a guard at each of the vertices	 Such a
set of guards will su�ce in the plane	 But to show how counterintuitive geometry can be� it is
interesting to not that there are simple nonconvex polyhedra in ��space� such that even if you
place a guard at every vertex there would still be points in the polygon that are not visible to
any guard	 �As a challenge� try to come up with one with the fewest number of vertices	�

An interesting question in combinatorial geometry is how does the number of guards needed
to guard any simple polygon with n sides grow as a function of n� If you play around with
the problem for a while �trying polygons with n � �� �� �� � � � � sides� for example� you will
eventually come to the conclusion that bn��c is the right value	 The 
gure above shows
a worst�case example� where bn��c guards are required	 A cute result from combinatorial
geometry is that this number always su�ces	 The proof is based on three concepts� polygon
triangulation� dual graphs� and graph coloring	 The remarkably clever and simple proof was
discovered by Fisk	

Theorem� �The Art�Gallery Theorem� Given a simple polygon with n vertices� there exists
a guarding set with at most bn��c guards	

��



Lecture Notes CMSC �������M

Before giving the proof� we explore some aspects of polygon triangulations	 We begin by
introducing a triangulation of P 	 A triangulation of a simple polygon is a planar subdivision
of �the interior of� P whose vertices are the vertices of P and whose faces are all triangles	 An
important concept in polygon triangulation is the notion of a diagonal� that is� a line segment
between two vertices of P that are visible to one another	 A triangulation can be viewed as
the union of the edges of P and a maximal set of noncrossing diagonals	

Lemma� Every simple polygon with n vertices has a triangulation consisting of n�� diagonals
and n� � triangles	

We�ll refer you to the text for a proof	 The proof is based on the fact that given any n�
vertex polygon� with n 	 � it has a diagonal	 �This may seem utterly trivial� but actually
takes a little bit of work to prove	 For example� it fails to hold in ��space	� The addition
of the diagonal breaks the polygon into two polygons� of say m� and m� vertices� such that
m� �m� � n� � �since both share the vertices of the diagonal�	 Thus by induction� there are
�m�� �� � �m� � �� � n� �� � � n� � triangles total	 A similar argument holds for the case
of diagonals	

It is a well known fact from graph theory that any planar graph can be colored with � colors	
�The famous ��color theorem	� This means that we can assign a color to each of the vertices
of the graph� from a collection of � di�erent colors� so that no two adjacent vertices have the
same color	 However we can do even better for the graph we have just described	
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Figure ��� Polygon triangulation and a ��coloring	

Lemma� Let T be the triangulation graph of a triangulation of a simple polygon	 Then T is
��colorable	

Proof� For every planar graph G there is another planar graph G� called its dual	 The dual
G� is the graph whose vertices are the faces of G� and two vertices of G� are connected
by an edge if the two corresponding faces of G share a common edge	

Since a triangulation is a planar graph� it has a dual� shown in the 
gure below	 �We
do not include the external face in the dual	� Because each diagonal of the triangulation
splits the polygon into two� it follows that each edge of the dual graph is a cut edge�
meaning that its deletion would disconnect the graph	 As a result it is easy to see that
the dual graph is a free tree �that is� a connected� acyclic graph�� and its maximum degree
is �	 �This would not be true if the polygon had holes	�

The coloring will be performed inductively	 If the polygon consists of a single triangle�
then just assign any � colors to its vertices	 An important fact about any free tree is that
it has at least one leaf �in fact it has at least two�	 Remove this leaf from the tree	 This
corresponds to removing a triangle that is connected to the rest triangulation by a single
edge	 �Such a triangle is called an ear	� By induction ��color the remaining triangulation	

��
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an ear

Figure ��� Dual graph of triangulation	

When you add back the deleted triangle� two of its vertices have already been colored�
and the remaining vertex is adjacent to only these two vertices	 Give it the remaining
color	 In this way the entire triangulation will be ��colored	

We can now give the simple proof of the guarding theorem	

Proof� �of the Art�Gallery Theorem�� Consider any ��coloring of the vertices of the polygon	
At least one color occurs at most bn��c time	 �Otherwise we immediately get there are
more than n vertices� a contradiction	� Place a guard at each vertex with this color	 We
use at most bn��c guards	 Observe that every triangle has at least one vertex of each
of the tree colors �since you cannot use the same color twice on a triangle�	 Thus� every
point in the interior of this triangle is guarded� implying that the interior of P is guarded	
A somewhat messy detail is whether you allow guards placed at a vertex to see along the
wall	 However� it is not a di�cult matter to push each guard in
nitesimally out from his
vertex� and so guard the entire polygon	

Lecture 
� More Polygon Triangulation

�Tuesday� Sep ��� �����
Reading� Chapter � in BKOS	

The Polygon Triangulation Problem� The art�gallery exercise was intended as motivation for
the problem of triangulating a simple polygon	 This operation is used in many other applica�
tions where complex shapes are to be decomposed into a set of disjoint simpler shapes	 There
are many applications in which the shapes of the triangles is an important issue �e	g	 skinny
triangles should be avoided� but there are equally many in which the shape of the triangle is
unimportant	 We will consider the problem of� given an arbitrary simple polygon� compute
any triangulation for the polygon	

This problem has been the focus of computational geometry for many years	 There is a simple
naive polynomial�time algorithm� based on adding successive diagonals� but it is not partic�
ularly e�cient	 There are very simple O�n logn� algorithms for this problem that have been
known for many years	 A longstanding open problem was whether there exists an O�n� time
algorithm	 The problem was solved by Chazelle in ����� but the algorithm is so amazingly
intricate� it could never compete with the practical but asymptotically slower O�n logn� al�
gorithms	 In fact� there is no known algorithm that runs in less than O�n logn� time� that is
really practical enough to replace the standard O�n logn� algorithm� which we will discuss	

We will present one of many known O�n logn� algorithms	 The approach we present today
is a two�step process �although with a little cleverness� both steps can be combined into one
algorithm�	 The 
rst is to consider the special case of triangulating a monotone polygon	 After

��
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this we consider how to convert an arbitrary polygon into a collection of disjoint monotone
polygons	 Then we will apply the 
rst algorithm to each of the monotone pieces	 The former
algorithm runs in O�n� time	 The latter algorithm runs in O�n logn� time	

Monotone Polygons� A polygonal chain C is said to be strictly monotone with respect to a given
line L� if any line that is orthogonal to L intersects C in at most one point	 A chain C
is monotone with respect to L if each line that is orthogonal to L intersects C in a single
connected component	 Thus it may intersect� not at all� at a single point� or along a single
line segment	 A polygon P is said to be monotone with respect to a line L if its boundary�

P � can be split into two chains� each of which is monotone with respect to L	

x-monotone polygon Monotone decomposition

Figure ��� Monotonicity	

Henceforth� let us consider monotonicity with respect to the x�axis	 We will call these polygons
horizontally monotone	 It is easy to test whether a polygon is horizontally monotne	 How�

�a� Find the leftmost and rightmost vertices �min and max x�coordinate� in O�n� time	

�b� These vertices split the polygon�s boundary into two chains� an upper chain and a lower

chain	 Walk from left to right along each chain� verifying that the x�coordinates are
nondecreasing	 This takes O�n� time	

As a challenge� consider the problem of determining whether a polygon is monotone in any
�unspeci
ed� direction	 This can be done in O�n� time� but is quite a bit harder	

Triangulation of Monotone Polygons� We can triangulate a monotone polygon by a simple
variation of plane�sweep method	 We begin with the assumption that the vertices of the poly�
gon have been sorted in increasing order of their x�coordinates	 �For simplicity we assume no
duplicate x�coordinates	 Otherwise� break ties between the upper and lower chains arbitrarily�
and within a chain break ties so that the chain order is preserved	� Observe that this does not
require sorting	 We can simply extract the upper and lower chain� and merge them �as done
in mergesort� in O�n� time	

The idea behind the triangulation algorithm is quite simple� Try to triangulate everything
you can to the left the current vertex by adding diagonals� and then remove the triangulated
region from further consideration	

In the example� there is obviously nothing to do until we have at least � vertices	 With vertex
�� it is possible to add the diagonal to vertex �� and so we do this	 In adding vertex �� we can
add the diagonal to vertex �	 However� vertices � and � are not visible to any other nonadjacent
vertices so no new diagonals can be added	 When we get to vertex �� it can be connected to
�� �� and �	 The process continues until reaching the 
nal vertex	

The important thing that makes the algorithm e�cient is the fact that when we arrive at a
vertex the untriangulated region that lies to the left of this vertex always has a very simple
structure	 This structure allows us to determine in constant time whether it is possible to
add another diagonal	 And in general we can add each additional diagonal in constant time	
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Figure ��� Triangulating a monotone polygon	

Since any triangulation consists of n� � diagonals� the process runs in O�n� total time	 This
structure is described in the lemma below	

Lemma� �Main Invariant� For i 	 �� let vi be the vertex just processed by the triangulation
algorithm	 The untriangulated region lying to the left of vi consists of two x�monotone
chains� a lower chain and an upper chain each containing at least one edge	 If the chain
from vi to u has two or more edges� then these edges form a re�ex chain �that is� a sequence
of vertices with interior angles all at least ��� degrees�	 The other chain consists of a
single edge whose left endpoint is u and whose right endpoint lies to the right of vi	

We will prove the invariant by induction	 As the basis case� consider the case of v�	 Here
u � v�� and one chain consists of the single edge v�v� and the other chain consists of the other
edge adjacent to v�	

To prove the main invariant� we will give a case analysis of how to handle the next event�
involving vi� assuming that the invariant holds at vi��	 and see that the invariant is satis
ed
after each event has been processed	 There are the following cases that the algorithm needs
to deal with	

Case 
� vi lies on the opposite chain from vi��� In this case we add diagonals joining vi to all
the vertices on the re�ex chain� from vi�� back to �but not including u�	 Now u � vi���
and the re�ex chain consists of the single edge vivi��	

Case �� v is on the same chain as vi��� We walk back along the re�ex chain adding diagonals
joining vi to prior vertices until we 
nd the 
rst that is not visible to vi �which may mean
that we add no diagonals�	

As can be seen in the 
gure� this may involve connecting vi to one or more vertices ��a�
or it may involve connecting vi to no additional vertices ��b�� depending on whether the
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Figure ��� Triangulation cases	


rst angle is less or greater than ��� degrees	 In either case the vertices that were cut o�
by diagonals are no longer in the chain� and vi becomes the new endpoint to the chain	

Note that when we are done �analogous to Graham�s scan� the remaining chain from vi
to u is a re�ex chain	

How is this implemented� The vertices on the re�ex chain can be stored in a stack	 We keep
a �ag indicating whether the stack is on the upper chain or lower chain� and assume that
with each new vertex we know which chain of the polygon it is on	 Note that decisions about
visibility can be based simply on orientation tests involving vi and the top two entries on the
stack	 When we connect vi by a diagonal� we just pop the stack	

Analysis� We claim that this algorithm runs in O�n� time	 As we mentioned earlier� the sorted list
of vertices can be constructed in O�n� time through merging	 The re�ex chain is stored on a
stack	 In O��� time per diagonal� we can perform an orientation test to determine whether to
add the diagonal and �assuming a DCEL� the diagonal can be added in constant time	 Since
the number of diagonals is n� �� the total time is O�n�	

Monotone Subdivision� In order to run the above triangulation algorithm� we 
rst need to subdi�
vide an arbitrary simple polygon into monotone polygons	 This is also done by a plane�sweep
approach	 We will add a set of nonintersecting diagonals that partition the polygon into
monotone pieces	

Observe that the absence of x�monotonicity occurs only at vertices in which in which the
interior angle is greater than ��� degrees and both edges lie either to the left of the vertex or
both to the right	 Following the books notation� we call the 
rst type a merge vertex �since
as the sweep passes over this vertex the edges seem to be merging� and the latter type a split

vertex	

Let�s discuss split vertices 
rst �both edges lie to the right of the vertex�	 When a split vertex
is encountered in the sweep� there will be an edge ej of the polygon lying above and an edge
ek lying below	 We might consider attaching the split vertex to left endpoint of one of these
two edges� but it might be that neither endpoint is visible to the split vertex	 But this would
imply that there is a closer vertex lying between ej and ek	 We will attach the split vertex to
the closest vertex to the left of the sweep line which lies between ej and ek	 Call this vertex
the helper�ej�	 �We could have just as easily associated the helper with ek� it doesn�t really
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Figure ��� Split vertices� merge vertices� and helpers	

matter	� If there is no vertex between these edges� then helper�ej� is de
ned to be the left
endpoint of ej or ek that lies closer to the sweep line	 See the 
gure	

Note that helper�ej� is de
ned with respect to the current location of the sweep line	 As the
sweep line moves� its value changes	 Also� it is only de
ned when the sweep line intersects ej	

One way to visualize helper�ej� is to imagine a trapezoid with vertical sides and bounded above
and below by ej and ek sweeping to the left of the current sweep line	 The 
rst vertex this
sweeping trapezoid hits is the helper	 These trapezoids are illustrated in the 
gure above	

Here are basic elements of the plane sweep algorithm to 
x the split vertices	 �We consider
merge vertices later	�

Events� The endpoints of the edges of the polygon	 These are sorted by increasing order of
x�coordinates	 Since no new events are generated� the events may be stored in a simple
sorted list �i	e	� no priority queue is needed�	

Sweep status� The sweep line status consists of the list of edges that intersect the sweep line�
sorted from top to bottom	 Our book notes that we actually only need to store edges
such that the polygon lies just below this edge �since these are the only edges that we
evaluate helper�� from�	

These edges are stored in a dictionary �e	g	� a balanced binary tree or a skip list�� so
that the operations of insert� delete� 
nd� predecessor and successor can be evaluated in
O�logn� time each	

Event processing� There are � event types based on a case analysis of the local structure of
edges around each vertex	 Let v be the current vertex encountered by the sweep	

Split vertex� Search the sweep line status to 
nd the edge e lying immediately above
v	 Add a diagonal connecting v to helper�e�	 Add the two edges incident to v in the
sweep line status� and make v the helper of the lower of these two edges and make v
the new helper of e	

Merge vertex� Find the two edges incident to this vertex in the sweep line status �they
must be adjacent�	 Delete them both	 Let e be the edge lying immediately above
them	 Make v the new helper of e	
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Start vertex� �Both edges lie to the right of v� but the interior angle is less than ���
degrees	� Insert this vertex and its edges into the sweep line status	 Set the helper
of the upper edge to v	

End vertex� �Both edges lie to the left of v� but the interior angle is less than ���
degrees	� Delete both edges from the sweep line status	

Upper�chain vertex� �One edge is to the left� and one to the right� and the polygon
interior is below	� Replace the left edge with the right edge in the sweep line status	
Make v the helper of the new edge	

Lower�chain vertex� �One edge is to the left� and one to the right� and the polygon
interior is above	� Replace the left edge with the right edge in the sweep line status	
Let e be the edge lying above here	 Make v the helper of e	

v

v
vv

ee e

LowerUpperEndStartMergeSplit

vv

Figure ��� Plane sweep cases	

This only inserts diagonals to 
x the split vertices	 What about the merge vertices� This
could be handled by applying essentially the same algorithm using a reverse �right to left�
sweep	 It can be shown that this will never introduce crossing diagonals� but it might attempt
to insert the same diagonal twice	 However� the book suggests a simpler approach	 Whenever
we change a helper vertex� check whether the original helper vertex is a merge vertex	 If so�
the new helper vertex is then connected to the merge vertex by a new diagonal	 It is not hard
to show that this essentially has the same e�ect as a reverse sweep� and it is easier to detect
the possibility of a duplicate insertion �in case the new vertex happens to be a split vertex�	

There are many special cases �what a pain �� but each one is fairly easy to deal with� so the
algorithm is quite e�cient	 As with previous plane sweep algorithms� it is not hard to show
that the running time is O�logn� times the number of events	 In this case there is one event
per vertex� so the total time is O�n logn�	 This gives us an O�n logn� algorithm for polygon
triangulation	

Lecture �� Intersection of Halfplanes

�Thursday� Sep ��� �����
Revised� Sept ��� 
xed the �clockwise bug in the last lemma	
Reading� Chapter � in BKOS� with some elements from Section �	� and Section ��	�	

Halfplane Intersection� Today we begin studying another very fundamental topic in geometric
computing� and along the way we will show a rather surprising connection between this topic
the topic of convex hulls� which we discussed earlier	

Any line in the plane splits the plane into two regions� called halfplane� one lying on either side
of the line	 We may refer to a halfplane as being either closed or open depending on whether
it contains the line itself	 For this lecture we will be interested in closed halfplanes	
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How do we represent lines and halfplanes� We may assume each halfplane is expressed by an
inequality of the form

ax� by � c�

and the halfplane is represented by the three coe�cients �a� b� c�	 The line bounding the
halfplane is ax � by � c	 Note that if we multiply a� b� and c by the same nonzero scalar
value� then the line equation does not change	 Thus� we can think of this triple as a form of
homogeneous coordinates for lines	 For example� if c �� �� then we can divide the equation
through by c� yielding an equation of the form �a�c�x� �b�c�y � �� which can be expressed by
the homogeneous coordinates �a�c� b�c� ��	

If the scalar multiple is negative� then the sense of the inequality will be reversed	 Thus� we
do not need a separate inequality of the form ax � by 	 c� since we can just negate all three
coe�cients to get the same e�ect	

Halfplane intersection problem� The halfplane intersection problem is� given a set of n closed
halfplanes� H � fh�� h�� � � � � hng compute their intersection	 A halfplane �closed or open� is
a convex set� and hence the intersection of any number of halfplanes is also a convex set	
Unlike the convex hull problem� the intersection of n halfplanes may generally be empty or
even unbounded	 A reasonable output representation might be to list the lines bounding the
intersection in counterclockwise order� perhaps along with some annotation as to whether the

nal 
gure is bounded or unbounded	

Figure ��� Halfplane intersection	

How many sides can bound the intersection of n halfplanes in the worst case� Observe that
by convexity� each of the halfplanes can appear only once as a side� and hence the maximum
number of sides is n	 How fast can we compute the intersection of halfspaces� As with
the convex hull problem� it can be shown through a suitable reduction from sorting that the
problem has a lower bound of ��n logn�	

Who cares about this problem� Our books discusses a rather fanciful application in the
area of casting	 More realistically� halfplane intersection and halfspace intersection in higher
dimensions are used as a method for generating convex shape approximations	 In computer
graphics for example� a bounding box is often used to approximate a complex multi�sided
polyhedral shape	 If the bounding box is not visible from a given viewpoint then the object
within it is certainly not visible	 Testing the visibility of a ��sided bounding box is much
easier than a multi�sided nonconvex polyhedron� and so this can be used as a 
lter for a
more costly test	 A bounding box is just the intersection of � axis�aligned halfspace in ��
space	 If more accurate� but still convex approximations are desired� then we may compute
the intersection of a larger number of tight bounding halfspaces� in various orientations� as the

nal approximation	

Solving the halfspace intersection problem in higher dimensions is quite a bit more challenging
than in the plane	 For example� just storing the output as a cyclic sequence of bounding planes
is not su�cient	 In general some sort of adjacency structure �ala DCEL�s� is needed	
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We will discuss two algorithms for the halfplane intersection problem	 The 
rst is given in
the text	 For the other� we will consider somewhat simpler problem of computing something
called the lower envelope of a set of lines� and show that it is closely related to the convex hull
problem	

Divide�and�Conquer Algorithm� We begin by sketching a divide�and�conquer algorithm for
computing the intersection of halfplanes	 The basic approach is very simple�

��� If n � �� then just return this halfplane as the answer	

��� Split the n halfplanes of H into subsets H� and H� of sizes bn��c and dn��e� respectively	

��� Compute the intersection of H� and H�� each by calling this procedure recursively	 Let
C� and C� be the results	

��� Intersect the convex polygons C� and C� �which might be unbounded� into a single convex
polygon C� and return C	

The running time of the resulting algorithm is most easily described using a recurrence� that
is� a recursively de
ned equation	 If we ignore constant factors� and assume for simplicity that
n is a power of �� then the running time can be described as�

T �n� �

�
� if n � ��
�T �n��� � S�n� if n � ��

where S�n� is the time required to compute the intersection of two convex polygons whose total
complexity is n	 If we can show that S�n� � O�n�� then by standard results in recurrences
it will follow that the overall running time T �n� is O�n logn�	 �See Cormen� Leiserson� and
Rivest� for a proof	�

Intersecting Two Convex Polygons� The only nontrivial part of the process is implementing an
algorithm that intersects two convex polygons� C� and C�� into a single convex polygon	 Note
that these are somewhat special convex polygons because they may be empty or unbounded	

We know that it is possible to compute the intersection of line segments in O��n � I� logn�
time� where I is the number of intersecting pairs	 Two convex polygons cannot intersect in
more than I � O�n� pairs	 �This follows from the observation that each edge of one polygon
can intersect at most two edges of the other polygon by convexity	� This would given O�n logn�
algorithm for computing the intersection and an O�n log� n� solution for T �n�� which is not as
good as we would like	

However� there is a very simple plane�sweep approach to solving this problem	 Suppose that
we perform a left�to�right plane sweep to compute the intersection	 Observe that by convexity
the sweep line intersects each Ci in at most two points	 Therefore� there are at most four
points in the sweep line status at any time	 Thus we do not need a fancy dictionary for storing
the sweep line status	 All the operations can be performed in constant time	 Furthermore� you
do not need a priority queue for the events	 The only two events that are important are the
leftmost points of C� and C� �note that they might stretch back to ���	 To determine the
next event point� you just need to check the four current edges for intersections� and check the
four edges for their next endpoints	 Since there are only a constant number of possibilities�
each event can be handled in O��� time	

Lower Envelopes and Duality� Next we consider a slight variant of this problem� to demonstrate
some connections with convex hulls	 These connections are very important to an understanding
of computational geometry� and we see more about them in the future	 These connections have
to do with a convex called point�line duality	 In a nutshell there is a remarkable similarity
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potential next event

Figure ��� Convex polygon intersection	

between how points interact with each other an how lines interact with each other	 Sometimes
it is possible to take a problem involving points and map it to an equivalent problem involving
lines� and vice versa	 In the process� new insights to the problem may become apparent	

The problem to consider is called the lower envelope problem� and it is a special case of the
halfplane intersection problem	 We are given a set of n lines L � f	�� 	�� � � � � 	ng where 	i is of
the form y � aix � bi	 Think of these lines as de
ning n halfplanes� y � aix� bi� each lying
below one of the lines	 The lower envelope of L is the boundary of the intersection of these
half planes	 �There is also an upper envelope� formed by considering the intersection of the
halfplanes lying above the lines	�

Lower envelope

Upper envelope

Figure ��� Lower and upper envelopes	

The lower envelope problem is a restriction of the halfplane intersection problem� but it an
interesting restriction	 Notice that any halfplane intersection problem that does not involve
any vertical lines can be rephrased as the intersection of two envelopes� a lower envelope de
ned
by the lower halfplanes and an upper envelope de
ned by the upward halfplanes	

I will show that solving the lower envelope problem is essentially equivalent to solving the
upper convex hull problem	 In fact� they are so equivalent that exactly the same algorithm
will solve both problems� without changing even a single character of code	 All that changes
is the way in which you view the two problems	

Duality� Let us begin by considering lines in the plane	 Each line can be represented in a number
of ways� but for now� let us assume the representation y � ax� b� for some scalar values a and
b	 We cannot represent vertical lines in this way� and for now we will just ignore them	 Later
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in the semester we will 
x this up	 Why did we subtract b� We�ll see later that this is just a
convenience	

Therefore� in order to describe a line in the plane� you need only give its two coordinates �a� b�	
In some sense� lines in the plane can be thought of as points in a new plane in which the
coordinate axes are labeled �a� b�� rather than �x� y�	 Thus the line y � �x � � corresponds
to the point ��� �� in this new plane	 Each point in this new plane of �lines corresponds to
a nonvertical line in the original plane	 We will call the original �x� y��plane the primal plane

and the new �a� b��plane the dual plane	

What is the equation of a line in the dual plane� Since the coordinate system uses a and b�
we might write a line in a symmetrical form� for example b � �a � �� where the values � and
� could be replaced by any scalar values	

Consider a particular point p � �px� py� in the primal plane� and consider the set of all
nonvertical lines passing through this point	 Any such line must satisfy the equation py �
apx � b	 The images of all these lines in the dual plane is a set of points�

L � f�a� b� j py � apx � bg
� f�a� b� j b � pxa� pyg�

Notice that this set is just the set of points that lie on a line in the dual �a� b��plane	 �And
this is why we negated b	� Thus� not only do lines in the primal plane map to points in the
dual plane� but there is a sense in which a point in the primal plane corresponds to a line in
the dual plane	

To make this all more formal� we can de
ne a function that maps points in the primal plane
to lines in the dual plane� and lines in the primal plane to points in the dual plane	 We denote
it using a asterisk ��� as a superscript	 Thus� given point p � �px� py� and line 	 � �y � ax� b�
in the primal plane we de
ne 	� and p� to be a point and line respectively in the dual plane
de
ned by�

	� � �a� b�

p� � �b � pxa � py��

p:(-2,2)

q:(-1,1)

r*:(b=-2a+1)

q*:(b=-a-1)

L*:(0,1)

L:(y=0x-1)
r:(-2,-1) s:(1,-1)

x

y

a

b

s*:(b=a+1)

p*:(b=-2a-2)

Dual planePrimal plane

Figure ��� Dual transformation	

We can de
ne the same mapping from dual to primal as well	 Duality has a number of
interesting properties� each of which is easy to verify by substituting the de
nition and a little
algebra	

��



Lecture Notes CMSC �������M

Self Inverse� �p��� � p	

Order reversing� Point p lies above�on�below line 	 in the primal plane if and only if line
p� passes below�on�above point 	� in the dual plane� respectively	

Intersection preserving� Lines 	� and 	� intersect at point p if and only if line p� passes
through points 	�� and 	�� in the dual plane	

Collinearity�Coincidence� Three points are collinear in the primal plane if and only if their
dual lines intersect in a common point	

To 
nish things up� we need to make the connection between the upper convex hull of a set of
points and the lower envelope of a set of lines	

Lemma� Let P be a set of points in the plane	 The counterclockwise order of the points along
the upper �lower� convex hull of P � is equal to the left�to�right order of the sequence of
lines on the lower �upper� envelope of the dual P �	

Proof� We will prove the result just for the upper hull and lower envelope� since the other case
is symmetrical	 For simplicity� let us assume that no three points are collinear	 Observe
that a necessary and su�cient condition for a pair of points pipj to form an edge on the
upper convex hull is that the line 	ij that passes through both of these points has every
other point in P strictly beneath it	

Consider the dual lines p�i and p�j 	 A necessary and su�cient condition that these lines
are adjacent on the lower envelope is that the dual point at which they meet� 	�ij lies
beneath all of the other dual lines in P �	

The order reversing condition of duality assures us that the primal condition occurs if and
only if the dual condition occurs	 Therefore� the sequence of edges on the upper convex
hull is identical to the sequence of vertices along the lower envelope	

As we move counterclockwise along the upper hull observe that the slopes of the edges
increase monotonically	 Since the slope of a line in the primal plane is the a�coordinate
of the dual point� it follows that as we move counterclockwise along the upper hull� we
visit the lower envelope from left to right	

One rather cryptical feature of this proof is that� although the upper and lower hulls appear
to be connected� the upper and lower envelopes of a set of lines appears to consist of two
disconnected sets	 To make sense of this� we should interpret the primal and dual planes from
the perspective of projective geometry� and think of the rightmost line of the lower envelope as
�wrapping around to the leftmost line of the upper envelope� and vice versa	 We will discuss
projective geometry later in the semester	

Another interesting question is that of orientation	 We know the the orientation of three points
is positive if the points have a counterclockwise orientation	 What does it mean for three lines
to have a positive orientation� �The de
nition of line orientation is exactly the same� in terms
of a determinant of the coe�cients of the lines	�

Lecture �� Linear Programming

�Tuesday� Sep �� �����
Reading� Chapter � in BKOS	

Linear Programming� Last time we considered the problem of computing the intersection of n
halfplanes� and presented in optimal O�n logn� algorithm for this problem	 In many applica�
tions it is not important to know the entire polygon �or generally the entire polytope in higher
dimensions�� but only to 
nd the point that that is extreme in some given direction	
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One particularly important application is that of linear programming	 In linear programming
�LP� we are given a set of linear inequalities� or contraints� which we may think of as de
ning
a �possibly empty� possibly unbounded� polyhedron in space� called the feasible region� and
we are given a linear objective function� which is to be minimized or maximized subject to the
given constraints	 A typical description of a d�dimensional linear programming problem might
be�

Maximize� c�x� � c�x� � � � �� cdxd
Subject to� a���x� � � � �� a��dxd � b�

a���x� � � � �� a��dxd � b�
			
an��x� � � � �� an�dxd � bn

where ai�j� ci� and bi are given real numbers	

From a geometric perspective� the feasible region is the intersection of halfspaces� and hence
is a convex polyhedron	 We can think of the objective function as a vector c� and the problem
is to 
nd the point of the feasible region that is furthest in the direction c� called the optimal

vertex	 In many of our examples� we will imagine that the vector c is pointing down� and hence
the problem is just that of 
nding the lowest point of the feasible region	

Linear programming is a very important technique used in solving large optimization problems	
Typical instances may involve hundreds to thousands of contraints in very high dimensional
space	 It is without doubt one of the most important formulations of general optimization
problems	

We will restrict ourselves to low dimensional instances of linear programming	 There are
a number of interesting optimization problems that can posed as a low�dimensional linear
programming problem� or as closely related optimization problems	 One which we will see
later is the problem of 
nding a minimum radius circle that encloses a given set of n points	

Normally� this extreme point will be a vertex of the feasible region polyhedron� but there
some other possibilities as well	 The feasible region may be empty �in which case the linear
programming problem is said to be infeasible� and there is no solution	 It may be unbounded�
and if c points in the direction of the unbounded part of the polyhedron� then there may
solutions with in
nitely large values of the objective function	 In this case there is no �
nite�
solution� and the LP problem is said to be unbounded	 Finally observe that in degenerate
situations� it is possible to have an in
nite number of 
nite optimum solutions� because an
edge or face of the feasible region is perpendicular to the objective function vector	 In such
instances it is common to break ties by requiring that the solution be lexicographically maximal
�e	g	 among all maximal solutions� take the one with the lexicographically maximum vector�	
This is exactly analogous to a applying a symbolic perturbation by rotating space	

��dimensional LP� The principal methods used for solving high dimensional linear programming
problems are the simplex algorithm and various interior point methods	 The simplex algo�
rithm works by 
nding a vertex on the feasible polyhedron� then then walking edge by edge
downwards until reaching a local minimum	 By convexity� the local minimum is the global
minimum	 It has been long known that there are instances where the simplex algorithm runs
in exponential time	 The question of whether linear programming was even solvable in poly�
nomial time was open until a little over �� years ago� when Karamarkar showed a polynomial
time algorithm based on moving through the interior of the feasible region	 �It should be men�
tioned that the method is polynomial in the number of number of constraints� the dimension�
and the number of bits of precision in the numbers	 Although this is good enough for prac�
tice� one of the major open problems left in the area is whether there is a strongly polynomial

time algorithm� that is polynomial without the assumption that the numbers are of bounded
precision	�
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Let us consider the problem just in the plane	 Here we know that there is an O�n logn�
algorithm based on just computing the feasible polyhedron� and 
nding its lowest vertex	
However� since we are only interested in one point on the polyhedron� it seems that we might
hope to do better	 We will show that ��dimensional LP problems can be solved in O�n� time�
and in fact more generally� any 
xed dimensional linear programming can be solved in O�n�
time	 The problem with using such an algorithm in practice is that the constant factors grow
very rapidly with the dimension �faster than polynomial time�	 We will discuss one simple
one later whose running time is O�d n�	 Thus these algorithms are only acceptable for relative
small dimensional problems	

Incremental Construction� The algorithms that we will discuss for linear programming are very
simple� and are based on a method called incremental construction	 Plane�sweep and incre�
mental construction are the two pillars of computational geometry� and so this is another
interesting reason for studying the linear programming problem	

Assume that we are given a set of n linear inequalities �halfplanes� h�� � � � � hn of the form�

ai�xx� ai�yy � bi�

and a nonzero objective function given by vector c � �cx� cy�	 The problem is to 
nd p �
�px� py� that is feasible and maximizes the dot product cxpx � cypy	 In our illustrations� we
will assume that c is pointing downwards� e	g	 c � ������	 �This is our book�s convention	
It is a bit confusing� because note that as you �decrease the y�coordinate of a point� you
�increase the objective function	�

Let us suppose for simplicity that the LP problem is bounded� and furthermore we can 
nd
two halfplanes whose intersection �a cone� is bounded with respect to the objective function	
Let us assume that the halfplanes are renumbered so that these are h� and h�� and let v�
denote this 
rst optimum vertex	

We will then add halfplanes one by one� h�� h�� � � �� and with each addition we will update
the current optimum vertex	 After the addition of fh�� h�� � � � � hig� let Ci denote the current
feasible region �their common intersection� and let vi denote the current feasible vertex	 Our
job is to update vi with each new addition	 �Note that we will not compute the Ci�s explicitly�
since doing so would require O�n logn� time� but it is handy to think about their existence
for the purposes of proving things�	 Notice that with each new constraint� the feasible region
becomes smaller� and hence the value of the objective function at optimum vertex can only
decrease	

There are two cases that can arise when hi is added	 The 
rst is that vi�� is already satis
es
constraint hi �that is� it lies within this halfplane�	 If so� then it is easy to see that the optimum
vertex does not change� that is vi � vi��	 On the other hand� if vi�� violates constraint hi�
then we need to 
nd a new optimum vertex	 Where shall we look for it�

The important observation is that �assuming that the feasible region is not empty� the new
optimum vertex must lie on the line that bounds hi	 Call this line 	i	 The book proves this
formally	 Intuitively� if the new optimum vertex did not lie on 	i� then draw a line segment
from vi�� to the new optimum	 Observe ��� that as you walk along this segment the value
of the objective function is decreasing monotonically �by linearity�� and ��� that this segment
must cross 	i �because it goes from being infeasible with respect to hi to being feasible�	 Thus�
it is maximized at the crossing point� which lies on 	i	 Convexity a linearity are both very
important for the proof	

So this leaves the question� How do we 
nd the optimum vertex lying on line 	i� This turns
out to be a ��dimensional LP problem	 Simply intersect each of the halfplanes with this line	
Each intersection will take the form of a ray that lies on the line	 We can think of each ray
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as representing an interval �unbounded to either the left or to the right�	 All we need to do is
to intersect these intervals� and 
nd the point that maximizes the objective function �that is�
the lowest point�	 Computing the intersection of a collection of intervals� is very easy and can
be solved in linear time	 We just need to 
nd the smallest upper bound and the largest lower
bound	

Lecture �� More Linear Programming

�Thursday� Oct �� �����
Reading� Chapter � in BKOS	

Recap� Last time we presented a simple incremental algorithm for linear programming in the plane	
We are given a set of n halfspaces� h�� h�� � � � � hn� and an objective function� described by a
vector c	 The goal is to 
nd the point p that has the maximum dot product with c �that is� is
furthest in direction c� subject to the constraint that it lies in the intersection of the halfspaces
�the convex feasible region�	

Let us recall the algorithm last time� from the perspective of linear programming in d�
dimensional space	 We are given a set of halfspaces and we want to 
nd the point that
lies in the intersection of the halfspaces and is most extreme in some direction	 We start by

nding an initial set of d halfspaces that de
ne an initial bounded solution	 We renumber the
halfspaces so that these are the 
rst d halfspaces	 Let vd be the initial optimum vertex	 Then
we add halfspaces one at a time	 On adding the hi� we test whether vi�� is feasible with respect
to hi	 If so� we set vi � vi��	 Otherwise� we claim that the new optimum must lie on the
hyperplane that bounds hi	 We intersect all the previous i�� halfspaces with this hyperplane
�thus reducing the dimension of the problem by ��� project the objective function vector onto
this hyperplane� and then recursively solve the resulting d� � dimensional LP problem	 The
recursion bottoms out when we get down to a ��dimensional LP problem �which is just the
problem of intersecting a collection of intervals�	 Thus we solve a d�dimensional problem by
repeatedly reducing it to a d� � dimensional problem� until we get down to a ��dimensional
problem� which is trivial to solve	

Analysis� What is the worst�case running time of this algorithm in the planar case� There are
roughly n halfspace insertions	 In step i� we may either 
nd that the current optimum vertex
is feasible� in which case the processing time is constant	 On the other hand� if the current
optimum vertex is infeasible� then we must solve a ��dimensional linear program with i � �
constraints	 In the worst case� this second step occurs all the time� and the overall running
time is given by the summation�

nX
i��

�i� �� �
n��X
i��

i �
n�n� ��

�
� O�n���

from standard results on summations �see Cormen� et al�	

Randomized Algorithm� The O�n�� time is not very encouraging �considering that we could
compute the entire feasible region in O�n logn� time�	 But we presented it because it leads to
a very elegant randomized O�n� time algorithm	 The algorithm operates in exactly the same
way� but we insert the halfplanes in random order	 This is called a randomized incremental

algorithm	 For example� just prior to calling the algorithm given last time� we call a procedure
for randomly permuting the initial input list	 �Our text gives an example	�

We analyze the running time in the expected case where we average over all n possible permu�
tations	 It is important to observe that the analysis makes no assumptions about the nature
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of the input� only on the random permutation used	 �In other words there are no bad inputs�
only bad random permutations	� The fact that the 
rst two halfplanes were chosen specially
adds a confusing element to this	 To be correct� we should think of them as being 
xed� and
we randomize over the �n � �� permutations of the remaining halfplanes	 However� we�ll try
to ignore this complicating factor below	

To analyze the algorithm we use an interesting technique called backward analysis	 Before
discussing backward analysis� think of how a typical probabilistic analysis �e	g	 the one used
for quicksort� works	 At each stage the algorithm has a set of random choices that might
be made	 �For example� in quicksort the choice is which element to select as the pivot	�
Each choice has a certain probability of occuring	 �Typically all choices are equally likely	�
We analyze the e�ect of each choice on the running time� and then multiply each times it
probability of occuring� and sum everything up to get the expected running time	

The di�culty of applying this to a problem like the linear programming problem is that at the
next stage it is very di�cult to predict what is going to happen� since it depends heavily on
what has gone on up to this point	 In a backwards analysis� rather than asking what is the
e�ect of the next random choice on the running time� we ask what was the e�ect of the previous
random choice	 This may sound just like like a semantical distinction� but the remarkable fact
is that it really makes things much easier to analyze	 The reason is that we have full knowledge
of the past	

Consider the example shown below	 We have i � � random halfplanes that have been added�
so far and vi � v is the current optimum vertex �see the 
gure�	 Rather than consider which
halfplane will be added next� let�s consider which one was added last	 For example� if h� was
the last to be added� then imagine the picture without h�	 Prior to this v would have been the
optimum vertex	 Therefore� if h� was added last� then it would have been added with O���
cost	 This applies to all the other halfplanes as well except those that de
ne v� namely h� and
h�	 For example� if h� was added last� then prior to its addition� we would have had a di�erent
optimum vertex� namely v�	 Thus if h� or h� were added last� then it would incur the higher
running time of O�i � �� to solve the ��dimensional LP problem	

11h

15h

h

h4

h

8

h
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3h

5

c

v

v’

Figure ��� Backward analysis	

What is the probability of each of these events occuring� The important observation here is
that the order in which halfplanes are inserted in completely independent of the geometric
structure	 Among the halfplanes in the diagram so far fh�� h�� h�� h�� h��� h��� h��g� there are
an equal number of permutations of these ending with h� as there are ending with h� as there
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are with any of them �� in particular	� Here we are ignoring the two initial halfplanes� which
are 
xed	 Imagine that they lie outside of the portion shown in the 
gure	 Thus each halfplane
has an equal probability of ��i of being the last halfplane to be added	 Among the i halfplanes
present� two of them �the two that bound the current optimum vertex� would incur a cost of
O�i � �� on the running time� and the other i � � would incur a cost of O���	 Thus� there is
a ��i chance of incuring time O�i� �� and a �i� ���i chance of incuring time O���	 Thus the
expected time for the i�th stage is�

�

i
O�i � �� �

i� �

i
O��� � O����

If we sum this up over all n stages� we just get O�n� as the total expected running time �by
the linearity of expectation�	

This may all seem like a bit of probabilistic �magic	 If you 
nd it unbelievable� you are
encouraged to draw a set of halfplanes and experiment with di�erent orders to convince yourself
�at least at an intuitive level� of the soundness of this technique	 We will be applying it on
other randomized algorithms this semester	

Unbounded LP�s� We began by assuming that we could always 
nd two �or generally d� initial
halfplanes to provide us with an initial bounded optimal vertex	 We never dealt with this
issue� but we claim that it is always possible to determine either that the LP is unbounded�
or to determine a pair of halfplanes that bound the feasible region in O�n� time	 Our book
presents an algorithm for doing this in the plane	 This algorithm has the nice feature that it
generalizes to higher dimensions �although they leave the generalization as an exercise�	

In the planar case there is a much simpler algorithm than this	 Consider the outward point�
ing normal vectors for the various halfplanes �imagine they are scaled to unit length�	 They
partition the unit circle into n angular sectors	 Now consider the angular sector that contains
the objective vector c	 Consider the two halfplanes lying immediates clockwise and counter�
clockwise from c	 If the angle between these two normals is less than ��� degrees� then the no
matter how far apart they are� these two halfplanes will converge at a point p and the feasible
set �if it is nonempty� will lie in the cone bounded by these halfplanes	

c

Figure ��� Boundedness test	

Intersecting with a hyperplane� Our book does not talk about how we go about intersecting
given set of halfspaces with a hyperplane	 �Su�ce it to say that it is a geometric primitive
that can be evaluated in O�d� time per hyperplane	� For completeness let�s consider how this
might be done	

Suppose that the halfspace that we just added was given by the inequality�

hi � ai��x� � ai��x� � � � �� ai�dxd � bi�

The corresponding hyperplane is given by the equation�

	i � ai��x� � ai��x� � � � �� ai�dxd � bi�
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We can express this more succinctly in matrix notation	 Let Ai denote the � � d vector
consisting of the i�th row of the A matrix� Ai � �ai��� ai��� � � � � ai�d�	 The inequality may be
written Aix � bi� where x is a d� � vector and bi is a scalar	

We want to intersect the other halfspaces with this hyperplane	 Furthermore� we would like
to represent the result as a LP in d� � dimensional problem	 �Observe that after intersection
the hyperplane still resides in d space	�

The idea is to apply one step of Gauss elimination using the equation of 	i to eliminate a
variable from all the other inequalities	 Let us assume that ai�� �� � �if not� select a dimension
k such that ai�k �� � and swap with the 
rst�	 Consider an arbitrary constraint hj that we
wish to intersect with 	i�

hj � Ajx � bj �

To eliminate the 
rst dimension from hj we multiply Ai by �aj���ai��� and subtract from Aj�
do the same for bi and bj�

A�j � Aj �
�
aj��
ai��

�
Ai

b�j � bj �
�
aj��
ai��

�
bi�

To see that this works� suppose that x is a point on the hyperplane 	i� implying that Aix � bi	
Suppose that x satis
ed constraint hj	 Then we have

A�jx �

�
Aj � aj��

ai��
Ai

�
x

� Ajx� aj��
ai��

Aix

� bj � aj��
ai��

bi � b�j�

Thus� every point on the hyperplane satis
es the modi
ed constraint if and only if it satis
es
the original constraint	 A similar elimination can be performed to the objective vector c	 It
is also easy to show that �as is standard in Guass elimination� the 
rst term of each equation
vanishes� so we are left with a d� � dimensional problem	 Reversing the process allows us to
project the d� � dimensional solution back into d�space	

Lecture ��� Orthogonal Range Searching

�Tuesday� Oct �� �����
Chapter � in BKOS	

Range Queries� We shift our focus from algorithm problems to data structures for the next few
lectures	 In general� we consider the question� given a collection of objects� preprocess them
�storing the results in a data structure of some variety� so that queries of a particular form
can be answered e�ciently	 Generally we measure data structures in terms of two quantities�
the time needed to answer a query and the amount of space needed by the data structure	
Often there is a tradeo� between these two quantities� but most of the structures that we will
be interested in will have either linear or near linear space	 Preprocessing time is an issue of
secondary importance� but most of the algorithms we will consider will have either linear of
O�n logn� preprocessing time	
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Range queries are queries of the general form� given a set P of points� list �or count or compute
some commutative function of� the subset of P lying within a given region	 Regions may be
rectangles� triangles� halfspaces� circles� etc	 There are many data structures for processing
range queries� depending on the type of region	

An important concept behind all geometric range searching is that the subsets that can be
formed by simple geometric ranges is much smaller than the set of possible subsets �called the
power set� of P 	 Given a particular class of ranges� a range space can be described abstractly as
a pair �P�R� consisting of the points P and the collection R of all subsets of P that be formed
by ranges of this class	 For example� the following 
gure shows the range space assuming
rectangular ranges for a set of points in the plane	 In particular� note that the sets f�� �g and
f�� �� �g cannot be formed by rectangular ranges	

R = { {},

{1,2}, {1,3}, {2,3},{2,4},{3,4},
{1}, {2}, {3}, {4},

{1,2,3}, {1,3,4}, {2,3,4} ,
{1,2,3,4}  }

1

2

3

4

Figure ��� Rectangular range space	

Today we consider orthogonal rectangular range queries� that is� ranges de
ned by rectangles
whose sides are aligned with the coordinate axes	 One of the nice thing about rectangular
ranges is that they can be decomposed into a collection ��dimensional searches	

One�dimensional range queries� Before consider how to solve general range queries� let us con�
sider how to answer ��dimension range queries� or interval queries	 We are given a set of
points P � fp�� p�� � � � � png on the line� and given an interval �xlo� xhi�� report all the points
lying within the interval	 Our goal is to 
nd a data structure that can answer these queries
in O�logn � k� time� where k is the number of points reported �an output sensitive result�	
Range counting queries can be answered in O�logn� time� with minor modi
cations	

Clearly one way to do this is to simply sort the points� and apply binary search to 
nd the

rst point of P that is greater than or equal to xlo� and less than or equal to xhi � and then
list all the points between	 However� this will not generalize to higher dimensions	

A basic approach to solving almost all range queries is to represent P as a collection of canonical
subsets fS�� S�� � � � � Skg� each Si � S �where k is generally a function of n and the type of
ranges�� such that the answer to any query can be expressed as a disjoint union of a small
number of canonical subsets	 Note that these subsets may overlap each other	 The trick to
solving a range searching problem is to identify a collection of canonical subsets having these
properties� and then 
nding the proper subsets for a given range	

Suppose that the points of P are sorted in increasing order and then stored in the leaves of a
balanced binary tree	 We can associate each node of this tree with the �canonical� subset of
point stored in the leaves that are descendents of this node	 This gives rise to O�n� canonical
subsets	 Further� we claim that the canonical subsets corresponding to any range can be
computed in O�logn� time	

Given any interval �xlo� xhi�� we search the tree to 
nd the leaf whose key is greater than or
equal to xlo and the leaf whose key is less than or equal to xhi	 Then we take all of the
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maximal subtrees lying between these two search paths	 In particular� the two search paths
will generally travel along some common subpath until reaching a node vsplit where the two
paths split	 After this each search path goes its own way	 When the left path to xlo travels
along a left edge of the tree� then the right subtree lies entirely within the interval	 Similarly�
when the right path to xhi travels along a right edge� then the left subtree lies entirely within
the interval	 The leaves of these maximal subtrees are the desired canonical subsets whose
disjoint union is the answer to the range query	 To answer a range reporting query� we simply
traverse these subtrees� reporting the points of their leaves	 To answer a range counting query
we store the total number of points in each subtree and sum all of these counts	

Since the search paths are of length at most logn� it follows that there are O�logn� total
canonical subsets	 Thus the range counting query can be answered in O�logn� time	 For
reporting queries� since the leaves of each subtree can be listed in time that is proportional to
the number of leaves in the tree �a basic fact about binary trees�� it follows that the total time
in the search is O�logn� k�� where k is the number of points reported	

1 7 9 15 17 23 25 29 314 12 14 20 223 27

{4,5}

{3}

{9,12,14,15} {17,20,22,23}

{25,27}

xlo=2 xhi=28

1,31

1,15

1,7

1,3 4,7

9,15

9,12 14,15 17,20 22,23

17,23

25,27

17,31

29,31

25,31

Figure ��� Canonical sets for interval queries	

Thus� ��dimensional range queries can be answered in O�logn� time� using O�n� storage	 How
can we extend this to higher dimensional range queries�

Kd�trees� The natural question is how to extend ��dimensional range searching to higher dimen�
sions	 First we will consider kd�trees	 This data structure is easy to implement and quite
practical and useful for many di�erent types of searching problems �nearest neighbor search�
ing for example�	 However it is not the asymptotically most e�cient solution for the orthogonal
range searching� as we will see later	

The idea behind a kd�tree is to extend the notion of a one dimension tree� but alternate is
using the x� or y�coordinates to split on	 In general dimension� the kd�tree cycles among the
various possible splitting dimensions	

Each internal node of the kd�tree is associated with two quantities� a splitting dimension �either
x or y�� and a splitting value s	 It has two subtrees	 Since the splitting dimension alternates
between x and y� some implementations do not store this explicitly� but keep track of it while
traversing the tree	 If the splitting dimension is x� then all points whose x�coordinates are less
than or equal to s are stored in the left subtree and points whose x�coordinates are greater
than or equal to s are stored in the right subtree	 �If a point�s coordinate is equal to s� then we
reserve the right to store it on either side	 This is done to allow us to balance the number of
points in the left and right subtrees	� When a single point �or more generally a small constant
number of points� remains� we store it in a leaf	

How is the splitting value chosen� To guarantee that the tree is balanced� the most common
method is to let the splitting value be the median splitting coordinate	 The resulting tree will
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have O�logn� height	

It is possible to build a kd�tree in O�n logn� time by a simple recursive procedure	 The most
costly step of the process is determining the median coordinate	 However� if we presort the
points into two cross�referenced lists� one sorted by x and the other sorted by y� then it is
an easy matter to 
nd the median at each step	 The two lists can then be split in O�n�
time each� where n is the number of remaining points	 This leads to a recurrence of the form
T �n� � �T �n��� � n� which solves to O�n logn�	

Searching the kd�tree� To answer an orthogonal range query we proceed as follows	 Let R denote
the query rectangle	 Assume that the current splitting line is vertical	 �The horizontal case
is similar	� Let v denote the current node in the tree	 Observe that each node of the tree is
naturally associated with a rectangular region of space	 Call this reg�v�	 The search proceeds
as follows	 If v is a leaf� then we check the point�s� stored in v as to whether it lies in R	 If
so we report�count them	 If v is an internal node� then we 
rst consider the left subtree	 If
its region lies entirely within R then we call a di�erent routine to enumerate all the points in
this subtree �or for a counting query we return a precomputed count of the number of points
in this subtree�	 If the left child�s region partially overlaps R then we search it recursively	 �If
the left child�s region does not overlap R at all� then we ignore it	� We do the same for the
right child of v	

How many nodes does this method visit altogether� We claim that the total number is O�
p
n�

k�� where k is the number of points reported	

Theorem� The times needed to answer an orthogonal range query using kd�tree with n points
in O�

p
n� k�� where k is the number of reported points	

Proof� First observe that for each subtree with m points� we can enumerate the points of this
subtree in O�m� time� by a simple traversal	 Thus� it su�ces to bound the number of
nodes visited in the search �not counting subtree enumeration�	

To count the number of nodes visited� 
rst observe that if we visit a node� then its
associated region must intersect one of the four sides of the rectangle range	 �Otherwise
it lies entirely inside or outside� and so is not visited	� We will do this separately for each
of the four sides� and multiply the result by four	

Rather than consider the line segment de
ning a side of the range rectangle� we consider
the number of nodes visited if we had applied an orthogonal range query to the entire
line on which this side lies	 This will only overestimate the number of nodes visited	

Because the kd�tree processes even and odd levels di�erently� it will be important to
analyze two levels at a time �or generally d levels at a time for dimension d�	 Let Q�n�
denote the query time for visiting a node v that has n points descended from it	 Consider
any orthogonal line that intersects the region associated with v	 The key observation
is that any horizontal or vertical line can intersect at most two of the four subregions
associated with the grandchildren of v	 �The other two will either be entirely contained
within the halfspace or lie entirely outside the halfspace	 In either case the algorithm will
not make a recursive call on them	� Since each child has half as many points �because
we split at the median�� the number of points in each grandchild is roughly n��	 Thus
we make at most two recursive calls on subtrees of size n��	 This gives the following
recurrence�

Q�n� �

�
� if n � ��
�Q�n��� � � otherwise	

It is an easy process to expand this recursion� and derive the fact that it solves to O�
p
n�	

Including the factor of four� we still have an O�
p
n� bound on the total number of nodes

visited� and adding the enumeration time the total time is O�
p
n� k� as desired	
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Lecture ��� More Orthogonal Range Searching

�Thursday� Oct �� �����
Read� Chapter � in BKOS	

Orthogonal Range Trees� Last time we saw that kd�trees could be used to answer orthogonal
range queries in the plane in O�

p
n � k� time	 Today we consider a better data structure�

called orthogonal range trees	

An orthogonal range tree is a data structure which� in all dimensions d 	 �� uses O�n log	d��
 n�

space� and can answer orthogonal rectangular range queries in O�log	d��
 n�k� time� where k
is the number of points reported	 Preprocessing time is the same as the space bound	 Thus� in
the plane� we can answer range queries in time O�logn� and space O�n logn�	 We will present
the data structure in two parts� the 
rst is a version that can answer queries in O�log� n� time
in the plane� and then we will show how to improve this in order to strip o� a factor of logn
from the query time	

The data structure is based on the concept of leveling a complex multi�dimensional search into
a constant number of simpler range searches	 In this case we will reduce a d�dimensional range
search to a series of ��dimensional range searches	

Suppose you have a query which can be stated as the intersection of a small number of simpler
queries	 For example� a range query in the plane can be stated as two range queries� Find all
the points whose x�coordinates are in the range �xlo� xhi� and all the points whose y�coordinates
are in the range �ylo� yhi�	 Let us consider how to do this for ��dimensional range queries� and
then consider how to generalize the process	 First� build a range tree for the 
rst range query�
which in this case is just a ��dimensional range tree for the x�range	 Recall that this is just
a balanced binary tree on these points sorted by x�coordinates	 Also recall that each node of
this binary tree is implicitly associated with a canonical subset of points	 These are the points
lying in the subtree rooted at this node	 The answer to any ��dimensional range query can
be represented as the disjoint union of a small collection of m � O�logn� canonical subsets�
fS�� S�� � � � � Smg� where each subset corresponds to a node in the search	 This constitutes the

rst level of the search tree	 For the second level� for each node v in this x�range tree� we build
an auxiliary tree� each of which is a y�coordinate range tree� which contains all the points in
the canonical subset associated with v	

Thus the data structure consists of a x�range tree� such that each node points to auxiliary
y�range tree	 This notion of a tree of trees is basic to solving range queries by leveling	 �For
example� for d�dimensional range trees� we will have d�levels of trees	�

To answer a query� we determine the canonical sets that satisfy the 
rst query �there will be
O�logn� of them�	 Each of these sets is just represented as a node in the range tree	 We know
that that these sets are disjoint� and that every point in these sets lies within the range of
x�coordinates	 Thus to answer the query� we just need to 
nd out which points from each
canonical subset lies within the range of y�coordinates	 To do this� for each canonical subset�
we access the auxiliary tree for this node� and perform a ��dimensional range search on the
y�range	 This process is illustrated in the following 
gure	

What is the query time for a range tree� Recall that it takes O�logn� time to locate the nodes
representing the canonical subsets for the ��dimensional range query	 For each� we invoke a
��dimensional range search	 Thus there O�logn� canonical sets� each invoking an O�logn�
range search� for a total time of O�log� n�	 As before� listing the elements of these sets can be
performed in additional k time by just traversing the trees	 Counting queries can be answered
by precomputing the subtree sizes� and then just adding them up	

The space used by the data structure is O�n logn� in the plane �and O�n log	d��
 n� in di�
mension d�	 The reason comes by summing the sizes of the two data structures	 The tree for
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Level 1 canonical sets.

Level 2 canonical sets.

x-range tree

Figure ��� Range tree search	

the x�coordinates requires only O�n� storage	 But we claim that the total storage in all the
auxiliary trees is O�n logn�	 We want to count the total sizes of all these trees	 The number of
nodes in a tree is proportional to the number of leaves� and hence the number of points stored
in this tree	 Rather than count the number of points in each tree separately� instead let us
count the number of trees in which each point appears	 This will give the same total	 Observe
that a point appears in the auxiliary trees of each of its ancestors	 Since the tree is balanced�
each point has O�logn� ancestors� and hence each point appears in O�logn� auxiliary trees	
It follows that the total size of all the auxiliary trees is O�n logn�	

By the way� observe that because the auxiliary trees are just ��dimensional trees� we could
just store them as a sorted array	

We claim that it is possible to construct a ��dimensional range tree in O�n logn� time	 Con�
structing the ��dimensional range tree for the x�coordinates is easy to do in O�n logn� time	
However� we need to be careful in constructing the auxiliary trees� because if we were to sort
each list of y�coordinates separately� the running time would be O�n log� n�	 Instead� the trick
is to construct the auxiliary trees in a bottom�up manner	 The leaves� which contain a single
point are trivially sorted	 Then we simply merge the two sorted lists for each child to form
the sorted list for the parent	 Since sorted lists can be merged in linear time� the set of all
auxiliary trees can be constructed in time that is linear in their total since� or O�n logn�	 Once
the lists have been sorted� then building a tree from the sorted list can be done in linear time	

Summarizing� here is the basic idea to this �and many other query problems based on leveled
searches�	 Let �S�R�� denote the range space� consisting of points S and range sets R�	 Con�
struct a data structure� which represents S by a collection of canonical sets� fS�� S�� � � � � Smg	
For each canonical subset� construct a data structure for answering the second type of range
query �and so on�	 The main property of the canonical subsets is that� for any range query�
we can e�ciently determine a small number of canonical sets whose disjoint union is equal to
the answer to the query �in our case this was O�logn� subsets�	 Furthermore� this collection
of canonical subsets can be determined e�ciently �in our case in O�logn� time�	 To answer a
range query� we solve the 
rst range query� resulting in a collection of canonical subsets whose
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union is the answer to this query	 We then invoke the second range query problem on each of
these subsets� and so on	 Finally we take the union of all the answers to all these queries	

Fractional Cascading� Can we improve on the O�log� n� query time� We would like to reduce
the query time to O�logn�	 As we descend the search the x�interval tree� for each node we
visit� we need to search the corresponding y�interval tree	 It is this combination that leads
to the squaring of the logarithms	 If we could search each y�interval in O��� time� then we
could eliminate this second log factor	 The trick to doing this is used in a number of places in
computational geometry� and is generally a nice idea to remember	 We are repeatedly searching
di�erent lists� but always with the same key	 The idea is to merge all the di�erent lists into
a single massive list� do one search in this list in O�logn� time� and then use the information
about the location of the key to answer all the remaining queries in O��� time each	 This is a
simpli
cation of a more general search technique called fractional cascading	

In our case� the massive list on which we will do one search is the entire of points� sorted by
y�coordinate	 In particular� rather than store these points in a balanced binary tree� let us
assume that they are just stored as sorted arrays	 �The idea works for either trees or arrays�
but the arrays are a little easier to visualize	� Call these the auxiliary lists	 We will do one
�expensive� search on the auxiliary list for the root� which takes O�logn� time	 However� after
this� we claim that we can keep track of the position of the y�range in each auxiliary list in
constant time as we descend the tree of x�coordinates	

Here is how we do this	 Let v be an arbitrary internal node in the range tree of x�coordinates�
and let vL and vR be its left and right children	 Let Av be the sorted auxiliary list for v and
let AL and AR be the sorted auxiliary lists for its respective children	 Observe that Av is the
disjoint union of AL and AR �assuming no duplicate y�coordinates�	 For each element in Av�
we store two pointers� one to the item of equal or larger value in AL and the other to the item
of equal or larger value in AR	 �If there is no larger item� the pointer is null	� Observe that
once we know the position of an item in Av� then we can determine its position in either AL

or AR in O��� additional time	

Here is a quick illustration of the general idea	 Let v denote a node of the x�tree� and let vL
and vR denote its left and right children	 Suppose that �in bottom to top order� the associated
nodes within this range are� hp�� p�� p�� p�� p�� p�i� and suppose that in vL we store the points
hp�� p�� p�i and in vR we store hp�� p�� p�i	 This is shown below	 For each point in the auxiliary
list for v� we store a pointer to the lists vL and vR� to the position this element would be
inserted in the other list �assuming sorted by y�values�	 That is� we store a pointer to the
largest element whose y�value is less than or equal to this point	

p2

p3

p4

p6

p1

p5

p2 p3 p5 p1 p4 p6

L Rvv

v

p1 p2 p3 p4 p5 p6

Figure ��� Cascaded search in range trees	

At the root of the tree� we need to perform a binary search against all the y�values to determine
which points lie within this interval� for all subsequent levels� once we know where the y�interval
falls with respect to the order points here� we can drop down to the next level in O��� time	
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Thus �as with fractional cascading� the running time is O�� logn�� rather than O�log�n�	 It
turns out that this trick can only be applied to the last level of the search structure� because
all other levels need the full tree search to compute canonical sets	

Theorem� Given a set of n points inRd� orthogonal rectangular range queries can be answered
in O�log	d��
 n � k� time� from a data structure of size O�n log	d��
 n� which can be

constructed in O�n log	d��
 n� time	

Lecture ��� Planar Point Location

�Tuesday� Oct ��� �����
Today�s material is not covered in our text	

Point Location� Today we consider is the point location problem	 The problem �in ��space� is�
given a polygonal subdivision of the plane with n vertices� preprocess this subdivision so that
given a query point q� we can e�ciently determine which face of the subdivision contains q	
We may assume that each face has some identifying label� which is to be returned	 We also
assume that the subdivision is represented in any �reasonable form� e	g	 as a DCEL	

In general q may coincide with an edge or vertex	 To simplify matters� we will assume that q
does not lie on an edge or vertex� but these special cases are not hard to handle	 Our book
discusses how to handle degeneracies	 As usual this is done by choosing a careful way to break
ties	

It is remarkable that although this seems like such a simple and natural problem� it took quite
a long time to discover an query time�space optimal solution	 It has long been known that
there are data structures that can perform these searches reasonably well �e	g	 quad�trees
and kd�trees�� but for which no good theoretical bounds could be proved	 There were data
structures of with O�logn� query time but O�n logn� space� and O�n� space but O�log� n�
query time	

The 
rst construction to achieve both O�n� space and O�logn� query time was a remarkably
clever construction due to Kirkpatrick	 It turns out that Kirkpatrick�s idea has some large
embedded constant factors that make it less attractive practically� but the idea is so clever
that it is worth discussing� nonetheless	 Later we will discuss a more practical randomized
method that is presented in our text	

Kirkpatrick�s Algorithm� Kirkpatrick�s idea starts with the assumption that the planar subdivi�
sion is a triangulation� and further that the outer face is a triangle	 If this assumption is not
met� then we begin by triangulating all the faces of the subdivision	 The label associated with
each triangular face is the same as a label for the original face that contained it	 For the outer
face is not a triangle� 
rst compute the convex hull of the polygonal subdivision� triangulate
everything inside the convex hull	 Then surround this convex polygon with a large triangle
�call the vertices a� b� and c�� and then add edges from the convex hull to the vertices of the
convex hull	 It may sound like we are adding a lot of new edges to the subdivision� but recall
from earlier in the semester that the number of edges and faces in any straight�line planar
subdivision is proportional to n� the number of vertices	 Thus the addition only increases the
size of the structure by a constant factor	

Note that once we 
nd the triangle containing the query point in the augmented graph� then
we will know the original face that contains the query point	 The triangulation process can be
performed in O�n logn� time by a plane sweep of the graph� or in O�n� time if you want to
use sophisticated methods like the linear time polygon triangulation algorithm	 In practice�
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a b

c

Figure ��� Triangulation of a planar subdivision	

many straight�line subdivisions� may already have convex faces and these can be triangulated
easily in O�n� time	

Let T� denote the initial triangulation	 What Kirkpatrick�s method does is to produce a
sequence of triangulations� T�� T�� T�� � � � � Tk� where k � O�logn�� such that Tk consists only of
a single triangle �the exterior face of T��� and each triangle in Ti�� overlaps a constant number
of triangles in Ti	

We will see how to use such a structure for point location queries later� but for now let us
concentrate on how to build such a sequence of triangulations	 Assuming that we have Ti� we
wish to compute Ti��	 In order to guarantee that this process will terminate after O�logn�
stages� we will want to make sure that the number of vertices in Ti�� decreases by some
constant factor from the number of vertices in Ti	 In particular� this will be done by carefully
selecting a subset of vertices of Ti and deleting them �and along with them� all the edges
attached to them�	 After these vertices have been deleted� we need retriangulate the resulting
graph to form Ti��	 The question is� How do we select the vertices of Ti to delete� so that
each triangle of Ti�� overlaps only a constant number of triangles in Ti�

There are two things that Kirkpatrick observed at this point� that make the whole scheme
work	

Constant degree� We will make sure that each of the vertices that we delete have constant
�� d� degree �that is� each is adjacent to at most d edges�	 Note that the when we
delete such a vertex� the resulting hole will consist of at most d � � triangles	 When we
retriangulate� each of the new triangles� can overlap at most d triangles in the previous
triangulation	

Independent set� We will make sure that no two of the vertices that are deleted are adjacent
to each other� that is� the vertices to be deleted form an independent set in the current
planar graph Ti	 This will make retriangulation easier� because when we remove m
independent vertices �and their incident edges�� we create m independent holes �non
triangular faces� in the subdivision� which we will have to retriangulate	 However� each
of these holes can be triangulated independently of one another	 �Since each hole contains
a constant number of vertices� we can use any stupid triangulation algorithm� since the
running time will be O��� anyway	�

The big question is whether such a subset exists	 That is� given any triangulation can we always

nd a independent subset of vertices of bounded degree whose size is at least a constant fraction
of the size of the whole vertex set� Fortunately� the answer is �yes� and in fact it is quite
easy to 
nd such a subset	 Part of the trick is to pick the value of d to be large enough �too
small and there may not be enough of them�	 It turns out that d � � is good enough	

Theorem� Given a planar graph with n vertices� there is an independent set consisting of
vertices of degree at most �� with at least n��� vertices	 This independent set can be
constructed in O�n� time	
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Wow� ��� The number is probably smaller in practice� but this is the best bound that this
proof generates	 However� the size of this constant is one of the reasons that Kirkpatrick�s
algorithm is not used in practice	 But the construction is quite clever� nonetheless� and once
a �simple solution is known to a problem it is often not long before a �practical solution
follows	

Before proving this theorem� we 
rst complete the description of the point location algorithm	
We start with T�� and repeatedly select an independent set of vertices of degree at most
�	 �However� never include the three vertices a� b� and c forming the outer face in such an
independent set	� We delete these vertices from the graph� and retriangulate the resulting
holes	 Observe that each triangle in the new triangulation can overlap at most � triangles in
the old triangulation	 Since we can eliminate a constant fraction of vertices with each stage�
after O�logn� stages� we will be down to the last � vertices	

The constant factors here are not so great	 With each stage� the number of vertices falls by a
factor of �����	 To reduce to the 
nal � vertices� implies that �������k � n or that

k � log����n 
 �� lgn�

It can be shown that by always selecting the vertex of smallest degree� this can be reduced to
a more palatable ��� lgn	

Point location algorithm� Now� to perform point location� we create a tree	 The root of the tree
is the single triangle of Tk	 The nodes at the next lower level are the triangles of Tk��� followed
by Tk��� until we reach the leaves� which are the triangles of our initial triangulation� T�	 Each
node for a triangle in triangulation Ti��� stores pointers to all the triangles it overlaps in Ti
�there are at most � of these�	

To locate a point� we start with the root� Tk	 If the query point does not lie within this single
triangle� then we are done �it lies in the exterior face�	 Otherwise� we search each of the �at
most �� triangles in Tk�� that overlap this triangle	 When we 
nd the correct one� we search
each of the triangles in Tk�� that overlap this triangles� and so forth	 Eventually we will 
nd
the triangle containing the query point in the last triangulation� T�� and this is the desired
output	

The tree has O�logn� levels �one for each triangulation�� it takes a constant amount of time to
move from one level to the next �at most � point�in�triangle tests�� thus the total query time
is O�logn�	 The size of the data structure is the sum of sizes of the triangulations	 Since the
number of triangles in a triangulation is proportional to the number of vertices� it follows that
the size is proportional to

n�� � ����� � �������� � �������� � � � �� � ��n�

�using standard formulas for geometric series�	 Thus the data structure size is O�n� �again�
with a pretty hefty constant�	

Construction and Analysis� The last thing that remains is to show how to construct the inde�
pendent set of the appropriate size	 We 
rst present the algorithm for 
nding the independent
set� and then prove the bound on its size	

��� Mark all nodes of degree 	 �	

��� While there exists an unmarked node do the following�

�a� Choose an unmarked vertex v	

�b� Add v to the independent set	

�c� Mark v and all of its neighbors	
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Figure ��� Kirkpatrick�s point location algorithm	
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It is easy to see that the algorithm runs in O�n� time �e	g	� by keeping unmarked vertices in
a stack and representing the triangulation so that neighbors can be found quickly	�

Intuitively� the argument that there exists a large independent set of low degree is based on
the following simple observations	 First� because the average degree in a planar graph is less
than �� there must be a lot of vertices of degree at most � �otherwise the average would be
unattainable�	 Second� whenever we add one of these vertices to our independent set� only �
other vertices become ineligible for inclusion in the independent set	

Here is the rigorous argument	 Recall from Euler�s formula� that if a planar graph is fully
triangulated� then the number of edges e satis
es e � �n� �	 If we sum the degrees of all the
vertices� then each edge is counted twice	 Thus the average degree of the graph is

X
v

deg�v� � �e � �n� �� � �n�

Next� we claim that there must be at least n�� vertices of degree � or less	 To see why� suppose
to the contrary that there were more than n�� vertices of degree � or greater	 The remaining
vertices must have degree at least � �with the possible exception of the � vertices on the outer
face�� and thus the sum of all degrees in the graph would have to be at least as large as

�
n

�
� �

n

�
� �n�

which contradicts the equation above	

Now� when the above algorithm starts execution� at least n�� vertices are initially unmarked	
Whenever we select such a vertex� because its degree is � or fewer� we mark at most � new
vertices �this node and at most � of its neighbors�	 Thus� this step can be repeated at least
�n����� � n��� times before we run out of unmarked vertices	 This completes the proof	

Lecture ��� More Planar Point Location

�Thursday� Oct �	� �����
Read� Chapt	 � of BKOS	

More Point Location� Last time we presented Kirkpatrick�s point location algorithm	 Today we
will consider another asymptotically optimal algorithm for point location� but the interesting
element of this algorithm is that it is randomized� and in particular� it is based on a randomized
incremental construction	 We will show that the size� preprocessing time� and query time are
O�n�� O�n logn� and O�logn�� respectively� in the expected case	 Here the expectation is
independent of the choice of the polygonal subdivision or the query point	 It depends only on
the order in which the objects are inserted	

Trapezoidal Map� The algorithm is based on a construction called a trapezoidal map �which also
goes under many other names in the computational geometry literature�	 Although we nor�
mally think of the input to a point location algorithm as being a planar subdivision� we will
de
ne the algorithm under the assumption that the input is just a collection of line segments
S � fs�� s�� � � � � sng� such that these line segments do not intersect except possibly at their
endpoints	 To construct a trapezoidal map� imagine shooting a bullet vertically upwards and
downwards from each vertex in the polygonal subdivision	 �For simplicity� we will assume that
there are no vertical segments in the initial subdivision and no two segments have the same
x�coordinate	 Both of these are easy to handle with an appropriate symbolic perturbation	�
The bullet travels until it hits another line segment of S	 The resulting �bullet paths� together
with the initial line segments de
ne the trapezoidal map	 To avoid in
nite bullet paths at the

��
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Figure ��� Trapezoidal map	

top and bottom of the subdivision� we may assume that the initial subdivision is contained
entirely within a large bounding rectangle	 An example is shown in the 
gure below	

First observe that all the faces of the resulting subdivision are trapezoids with vertical sides	
The left or right side might degenerate to a line segment of length zero� implying that the
resulting trapezoid degenerates to a triangle	 We claim that the process of converting an
arbitrary polygonal subdivision into a trapezoidal decomposition increases its size by at most
a constant factor	 The 
nal trapezoidal map will be given as a subdivision� represented� say
using a DCEL	

Claim� Given a polygonal subdivision with n segments� the resulting trapezoidal map has at
most �n� � vertices and �n� � trapezoids	

Proof� To prove the bound on the number of vertices� observe that each vertex shoots two
bullet paths� each of which will result in the creation of a new vertex	 Thus each original
vertex gives rise to three vertices in the 
nal map	 Since each segment has two vertices�
this implies at most �n vertices	

To bound the number of trapezoids� observe that for each trapezoid in the 
nal map� its
left side �and its right as well� is bounded by a vertex of the original polygonal subdivision	
The left endpoint of each line segment can serve as the left bounding vertex for two
trapezoids �one above the line segment and the other below� and the right endpoint of a
line segment can serve as the left bounding vertex for one trapezoid	 Thus each segment
of the original subdivision gives rise to at most three trapezoids� for a total of �n	 The
last trapezoid is the one bounded by the left side of the bounding box	

An important fact to observe about each trapezoid is that it is de
ned by exactly four entities
from the original subdivision� a segment on top� a segment on the bottom� a bounding vertex
on the left� and a bounding vertex on the right	 This simple observation will play an important
role in the analysis	

Trapezoidal decompositions� like triangulations� are interesting data structures in their own
right	 It is another example of the idea of converting a complex shape into a disjoint collection
of simpler objects	 The fact that the sides are vertical makes trapezoids simpler than arbitrary
quadrilaterals	 Finally observe that the trapezoidal decomposition is a re
nement of the orig�
inal polygonal subdivision� and so once we know which face of the trapezoidal map a query
point lies in� we will know which face of the original subdivision it lies in �either implicitly� or
because we label each face of the trapezoidal map in this way�	

Construction� We could construct the trapezoidal map easily by plane sweep	 �Hopefully� this
is an easy exercise by this point� but think about how you would do it	� We will build the
trapezoidal map by a randomized incremental algorithm� because the point location algorithm
is based on this construction	 �In fact� historically� this algorithm arose as a method for
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computing the trapezoidal decomposition of a collection of intersecting line segments� and the
point location algorithm arose as an artifact that was needed in the construction	�

The incremental algorithm starts with the initial bounding rectangle �that is� one trapezoid�
and then we add the segments of the polygonal subdivision one by one in random order	 As
each segment is added� we update the trapezoidal map	 Let Si denote the subset consisting of
the 
rst i �random� segments� and let Ti denote the resulting trapezoidal map	

To perform the update this we need to know which trapezoid the left endpoint of the segment
lies in	 We will let this question go until later� since it will be answered by the point loca�
tion algorithm itself	 Then we trace the line segment from left to right� determining which
trapezoids it intersects	 Finally� we go back to these trapezoids and �
x them up	 There are
two things that are involved in 
xing	 First� the left and right endpoints of the new segment
need to have bullets 
red from them	 Second� one of the earlier bullet paths might hit this
line segment	 When that happens the bullet path must be trimmed back	 �We know which
vertices are from the original subdivision vertices� so we know which side of the bullet path to
trim	� The process is illustrated in the 
gure below	

Figure ��� Incremental update	

Observe that the structure of the trapezoidal decomposition does not depend on the order
in which the segments are added	 This observation will be important for the probabilistic
analysis	 The following is also important to the analysis	

Claim� Ignoring the time spent to locate the left endpoint of an segment� the time that it
takes to insert the ith segment and update the trapezoidal map is O�ki�� where ki is the
number of newly created trapezoids	

Proof� Consider the insertion of the ith segment� and let K denote the number of bullet paths
that this segment intersects	 We need to shoot four bullets �two from each endpoint� and
then trim each of the K bullet paths� for a total of K � � operations that need to be
performed	 If the new segment did not cross any of the bullet paths� then we would get
exactly four new trapezoids	 For each of the K bullet paths we cross� we add one more to
the number of newly created trapezoids� for a total of K ��	 Thus� letting ki � K �� be
the number of trapezoids created� the number of update operations is exactly ki	 Each
of these operations can be performed in O��� time given any reasonable representation of
the trapezoidal map �e	g	 a DCEL�	

Analysis� We left one detail out� which is how we locate the left endpoint of each new segment that
we add	 But ignoring the time for this �which we will see will be O�logn� time on average��
we will show that the expected time to add each segment is O���	 Since there are n insertions�
this will lead to a total expected time complexity of O�n�� � logn�� � O�n logn�	

We know that the size of the 
nal trapezoidal map is O�n�	 It turns out that the total size of
the point location data structure will actually be proportional to the number of new trapezoids
that are created with each insertion	 In the worst case� when we add the ith segment� it might
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cut through a large fraction of the existing O�i� trapezoids� and this would lead to a total
size proportional to

Pn
i�� i � n�	 However� the magic of the incremental construction is that

this does not happen	 We will show that on average� each insertion results in only a constant
number of trapezoids being created	

�You might stop to think about this for a moment� because it is rather surprising at 
rst	
Clearly if the segments are short� then each segment might not intersect very many trapezoids	
But what if all the segments are long� It seems as though it might be possible to construct a
counterexample	 Give it a try before you read this	�

Lemma� Consider the randomized incremental construction of a trapezoidal map� and let
ki denote the number of new trapezoids created when the ith segment is added	 Then
E�ki� � O���� where the expectation is taken over all permutations of the segments	

Proof� The analysis will be based on a backwards analysis	 Let Ti denote the trapezoidal map
after the insertion of the ith segment	 Because we are averaging over all permutations�
among the i segments that are present in Ti� each one has an equal probability ��i of
being the last one to have been added	 For each of the segments s we want to count the
number of trapezoids that would have been created� had s been the last segment to be

added	 Let�s say that a trapezoid ! depends on an segment s� if s would have caused
! to be created� had s been added last	 We want to count the number of trapezoids
that depend on each segment� and then compute the average over all segments	 If we let
��!� s� � � if segment s depends on !� and � otherwise� then the expected complexity is

E�ki� �
�

i

X
s�Si

X
��Ti

��!� s��

Some segments might have resulted in the creation of lots of trapezoids and other very few	
How do we get a handle on this quantity� The trick is� rather than count the number
of trapezoids that depend on each segment� we count the number segments that each
trapezoid depends on	 �The old combinatorial trick of reversing the order of summation	�
In other words we want to compute�

E�ki� �
�

i

X
��Ti

X
s�Si

��!� s��

depends on.
The segments that the trapezoid

The trapezoids that depend on s

s

Figure ��� Trapezoid�segment dependencies	

This is much easier to determine	 In particular� each trapezoid is bounded by four sides	
The top and bottom sides are each determined by a segment of Si� and clearly if either of
these was the last to be added� then this trapezoid would have come into existence as a

��



Lecture Notes CMSC �������M

result	 The left and right sides are each determined by a endpoint of a segment in Si� and
clearly if either of these was the last to be added� then this trapezoid would have come
into existence	 Thus� each trapezoid is dependent on at most four segments� implying
that

P
s�Si

��!� s� � �	 Since Ti consists of O�i� trapezoids we have

E�ki� � �

i

X
��Ti

� �
�

i
�jTij �

�

i
�O�i� � O����

Lecture ��� Point Location in Trapezoidal Maps

�Tuesday� Oct ��� �����
Read� Chapt	 � of BKOS	

Point Location� Last time we presented a randomized incremental algorithm for constructing a
trapezoidal map in the plane	 Today we consider how to modify this algorithm to answer
point location queries	 The preprocessing time will be O�n logn� in the expected case �as was
the time to construct the trapezoidal map�� and the space and query time will be O�n� and
O�logn�� respectively� in the expected case	

Recall from last time that we are treating the input as a set of segments S � fs�� � � � � sng
�permuted randomly�� that Si denotes the subset consisting of the 
rst i segments of S� and Ti
denotes the trapezoidal map of Si	 One important element of the analysis to remember from
last time is that each time we add a new line segment� it may result in the creation of the
collection of new trapezoids� which were said to depend on this line segment	 We presented
a backwards analysis that the number of new trapezoids that are created with each stage is
expected to be O���	 This will play an important role in today�s analysis	

Point Location Data Structure� As in Kirkpatrick�s algorithm� the point location data struc�
ture will be based on a rooted directed acyclic graph	 In particular� to the query processor
it will look like a binary tree� but there may be sharing of subtrees	 There are two types of
nodes� x�nodes and y�nodes	 Each x�node contains the x�coordinate of an endpoint of one of
the segments	 Its two children correspond to the points lying to the left and to the right of this
coordinate	 Each y�node contains a pointer to a segment	 The left and right children corre�
spond to whether the query point is above or below line containing the segment� respectively	
�We will visit a y�node only if we already know that the x�coordinate of the query point lies
between the left and right endpoints of the segment	�

Our construction of the point location data structure mirrors the incremental construction of
the trapezoidal map	 In particular� if we freeze the construction just after the insertion of any
segment� the existing structure will be a point location structure for the existing trapezoidal
map	 In the 
gure below we show a simple example of what the data structure looks like for
two line segments �from our textbook�	 There is one leaf for each trapezoid	 The y�nodes are
shown as hexagons	 For example� if the query point is in trapezoid D� we would 
rst detect
that it is to the right of p�� then left of q�� then below s� �the right child�� then right of p��
then above s� �the left child�	

The question is how do we build this data structure incrementally� First observe that when
a new line segment is added� we only need to adjust the portion of the tree that involves the
trapezoids that have been deleted as a result of this new addition	 This will be set of leaves
in the current tree	 Each such leaf will be replaced with a new subtree� which determines
which one of the new trapezoids contains the query point	 In Kirkpatrick�s algorithm we just
said �check each of the new triangles that overlapped one of the old triangles� and we will do
essentially the same thing here	 As in Kirkpatrick�s algorithm� it will turn out that each old
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Figure ��� Trapezoidal map point location data structure	

trapezoid is overlapped by a constant number of new trapezoids	 However� let us consider the
process in a little more detail here	

Suppose that we add a line segment	 This results in the replacement of an existing set of
trapezoids with a set of new trapezoids	 If the segment passes entirely through an existing
trapezoid� then there will be two overlapping trapezoids in the new trapezoidal map� and
thus we just need to compare against the newly added segment �one y�node�	 If the existing
trapezoid contains one or both endpoints� then we need to test on which sides of these endpoints
we lie �one or two x�nodes� and if we lie between them� then we need to test whether we lie
above or below the line segment �one y�node�	 If we add a line segment to the example above�
resulting in the replacement of C� D� E and G with new trapezoids� we will replace these
leaves of the subtree as shown in the 
gure below	 It is important to notice that �through
sharing� each trapezoid appears exactly once as a leaf in the resulting structure	
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Figure ��� Line segment insertion	

Analysis� We claim that the size of the point location data structure is O�n� and the query time
is O�logn�� both in the expected case	 As usual� the expectation depends only on the order of
insertion� not on the line segments or the location of the query point	

To prove the space bound of O�n�� observe that the number of new nodes added to the
structure with each new segment is proportional to the number of newly created trapezoids	
This follows by observing that we create a constant number of new nodes for each existing
trapezoid that was destroyed� and the number of new trapezoids is proportional to the number

��



Lecture Notes CMSC �������M

of old trapezoids that were destroyed	 Last time we showed that with each new insertion� the
expected number of trapezoids that were created was O���	 Therefore� we add O��� new nodes
with each insertion in the expected case� implying that the total size of the data structure is
O�n�	

Analyzing the query time is a little subtler	 In a normal probabilistic analysis of data structures
we think of the data structure as being 
xed� and then compute expectations over random
queries	 Here the approach will be to imagine that we have exactly one query to handle	
�Imagine an adversary� that tries to select the worst�possible query point� but does not know
what random choices the algorithm made in building the data structure	� We will show that
no matter how the query point is selected� most random orderings of the line segments will
lead to a search path of length O�logn� in the resulting tree	 Since our analysis will be made
without any assumptions on the 
nal trapezoid in which q lies� it will apply equally well to all
query points	

Rather than consider the search path for q in the 
nal search structure� we will consider how
q moves incrementally through the structure with the addition of each new line segment	 Let
!i denote the trapezoid of the map that q lies in after the insertion of the 
rst i segments	
Observe that if !i�� � !i� then insertion of the ith segment did not a�ect the trapezoid that
q was in� and therefore q will stay where it is relative to the current search structure	 �For
example� if q was in trapezoid B prior to adding s� in the 
gure above� then the addition of s�
does not incur any additional cost to locating q	� However� if !i�� �� !i� then the insertion
of the ith segment caused q�s trapezoid to be deleted	 As a result� q must locate itself with
respect to the newly created trapezoids that overlap !i��	 Since there are a constant number
of such trapezoids �at most four�� there will be O��� work needed to locate q with respect to
these	 In particular� q may fall as much as three levels in the search tree	 �For example� if q
was in trapezoid C� before the addition of s� in the 
gure above� and q was in trapezoid J
afterwards� then q would have to pass through two new levels of the structure as a result of
this insertion	�

To compute the expected length of the search path� it su�ces to compute the probability
that the trapezoid that contains q changes as a result of the ith insertion	 Let Pi denote this
probability	 Since q could fall through up to three levels in the search tree as a result of each
the insertion� the expected length of q�s search path in the 
nal structure is at most

nX
i��

�Pi�

We will show that Pi � ��i	 From this it will follow that the expected path length is at most

nX
i��

�
�

i
� ��

nX
i��

�

i
�

which is roughly �� lnn � O�logn� by the Harmonic series	

To show that Pi � ��i� we apply a backwards analysis	 Recall from last time that the trapezoid
that contains q is dependent on at most four trapezoids� which de
ne the top and bottom edges�
and the left and right sides of the trapezoid	 Since each segment is equally likely to be the
last segment to be added� the probability that the last insertion caused q to belong to a new
trapezoid is at most ��i	 This completes the proof	

Guarantees on Search Time� The only problem with this result is that even though the search
time is provably small in the expected case for a given query point� it might still be the case
that once the data structure has been constructed there is a single very long path in the search
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structure� and the user repeatedly performs queries along this path	 The result provides no
guarantees on the running time of all queries	

Although we will not prove it� the book presents a stronger result� namely that the length of
the maximum search path is also O�logn� with high probability	 In particular� they prove the
following	

Lemma� Given a set of n non�crossing line segments in the plane� and a parameter � � �� the
probability that the total depth of the randomized search structure exceeds �� ln�n� ���
is at most ���n� ��� ln ������	

For example� for � � ��� the probability that the search path exceeds �� ln�n � �� is at most
���n� �����	 �The constant factors here are rather weak� but a more careful analysis leads to
a better bound	�

Nonetheless� this itself is enough to lead to variant of the algorith for which O�logn� time is
guaranteed	 Rather than just running the algorithm once and taking what it gives� instead
keep running it and checking the structure�s depth	 As soon as the depth is at most c logn for
some suitably chosen c� then stop here	 Depending on c and n� the above lemma indicates how
long you may need to expect to repeat this process until the 
nal structure has the desired
depth	 For su�ciently large c� the probability of 
nding a tree of the desired depth will be
bounded away from � by some constant factor� and therefore after a constant number of trials
�depending on this probability� you will eventually succeed in 
nding a point location structure
of the desired depth	 A similar argument can be applied to the space bounds	

Theorem� Given a set of n non�crossing line segments in the plane� in expected O�n logn�
time� it is possible to construct a point location data structure of �worst case� size O�n�
that can answer point location queries in �worst case� time O�logn�	

Lecture �	� Review for the Midterm

�Thursday� Oct ��� �����
Midterm Exam� Oct ��	 The exam will be closed�book� closed�notes� but you are allowed one
cheat�sheet �front and back� of notes	

What we�ve covered so far�

Geometric Background� A�ne geometry� homogeneous coordinates� orientation test� sym�
bolici perturbation	

Convex hulls� Graham�s scan� an O�n logn� algorithm	

Line Segment Intersection� Plane sweep algorithm�O��n�k� logn�� where k is the number
of intersections	

Representing planar subdivisions� Euler�s formula� DCEL�s� dual graphs	

Polygon Triangulation� The art�gallery problem� monotone decomposition by plane sweep
in O�n logn� time� triangulating monotone polygons in O�n� time	 There exists an O�n�
time triangulation� but it is quite complicated	

Intersection of Halfplanes� Divide�and�conquer solution that runs in O�n logn� time	

Point�line duality� The lower and upper envelopes of a set of lines can be computed in
O�n logn� time by applying point�line duality� and computing the convex hull of the dual
points	
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Linear Programming� Randomized incremental algorithm for low dimensional linear pro�
gramming	 Runs in O�d n� expected time in dimension d	

Orthogonal Range Searching� kd�trees and range trees	 Both can be constructed inO�n logn�
time	 Showed that kd�trees could be used to answer orthogonal range queries in O�

p
n�

time� and that range trees could answer them in O�logn� time	 Both can be generalized
to higher dimensions� with range trees taking O�logd�� n� time	

Planar Point Location� Kirkpatrick�s algorithm	 O�n logn� preprocessing time�O�n� space�
and O�logn� query time	 Based on decimation of a triangulation	

Trapezoidal Maps� Randomized incremental construction and point location	 O�n logn�
expected preprocessing time� and O�n� space and O�logn� query time	

Techniques�

� Plane sweep	

� Divide and conquer	

� �Randomized� incremental construction	

� Decomposing search problems into layers of trees	

� Point�line duality	

� Fractional cascading	

� Backwards analysis	

Lecture �
� Midterm

�Tuesday� Oct �
� �����
Midterm Exam today	 No lecture	

Lecture ��� Voronoi diagrams

�Thursday� Oct �� �����
Reading� BKOS� Chapt �	

Euclidean Geometry� We now will make a subtle but important shift	 Up to know� virtually
everything that we have done has not needed the notion of angles� lengths� or distances �except
for our work on circles�	 All geometric tests were made on the basis of orientation tests� a
purely a�ne construct	

But there are important geometric algorithms which depend on nona�ne quantities such as
distances and angles	 Let us begin by de
ning the Euclidean length of a vector v � �vx� vy�

in the plane to be jvj �
q
v�x � v�y �and in general dimension it is jvj �

p
v�� � � � �� v�d�	 The

distance between two points p and q� denoted dist�p� q�� is de
ned to be jp� qj	
Voronoi Diagrams� Voronoi diagrams �like convex hulls� are among the most important structures

in computational geometry	 A Voronoi diagram records information about what is close to
what	

Let P � fp�� p�� � � � � png be a set of points in the plane �or in any dimensional space�� which
we call sites	 De
ne V�pi�� the Voronoi cell for pi� to be the set of points q in the plane such
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that dist�q� pi� � dist�q� pj�	 That is� the Voronoi cell for pi consists of the set of points for
which pi is the unique nearest neighbor to q�

V�pi� � fq j dist�pi� q� � dist�pj� q�� �j �� ig�

Another way to de
ne V�pi� is in terms of the intersection of halfplanes	 Given two sites pi
and pj � the set of points that are strictly closer to pi than to pj is just the open halfplane
whose bounding line is the perpendicular bisector between pi and pj	 Denote this halfplane
h�pi� pj�	 It is easy to see that a point q lies in V�pi� if and only if q lies within the intersection
of h�pi� pj� for all j �� i	 In other words�

V�pi� � �j ��ih�pi� pj��

Since the intersection of halfplanes is a �possibly unbounded� convex polygon� it is easy to see
that V�pi� is a �possibly unbounded� convex polygon	 Finally� de
ne the Voronoi diagram of
P � denoted Vor�P � to be what is left of the plane after we remove all the �open� Voronoi cells	
It is not hard to prove �see the text� that the Voronoi diagram consists of a collection of line
segments which may be unbounded� either at one end or both	

Figure ��� Voronoi diagram

Voronoi diagrams have a number of important applications	 These include�

Nearest neighbor queries� One of the most important data structures problems in com�
putational geometry is solving nearest neighbor queries	 Given a point set P � and given
a query point q� determine the closest point in P to q	 This can be answered by 
rst
computing a Voronoi diagram and then locating the cell of the diagram that contains q	
�We have already discussed point location algorithms	�

Computational morphology� Some of the most important operations in morphology �used
very much in computer vision� is that of �growing and �shrinking �or �thinning�
objects	 If we grow a collection of points� by imagining a grass 
re starting simultaneously
from each point� then the places where the grass 
res meet will be along the Voronoi
diagram	 The medial axis of a shape �used in computer vision� is just a Voronoi diagram
of its boundary	

Facility location� We want to open a new Blockbuster video	 It should be placed as far as
possible from any existing video stores� Where should it be placed� It turns out that the
vertices of the Voronoi diagram are the points that locally at maximum distances from
any other point in the set	

High clearance path planning� A robot wants to move around a set of obstacles	 To mini�
mize the possibility of collisions� it should stay as far away from the obstacles as possible	
To do this� it should walk along the edges of the Voronoi diagram	
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Properties of the Voronoi diagram� Some theoretical observations about the Voronoi diagram
are warranted at this point	

Voronoi edges� Each point on an edge of the Voronoi diagram is equidistant from its two
nearest neighbors pi and pj 	 Thus� there is a circle centered at such a point such that pi
and pj lie on this circle� and no other site is interior to the circle	

Voronoi vertices� It follows that vertex at which three Voronoi cells V�pi�� V�pj �� and V�pk�
intersect is equidistant from all sites	 Thus it is the center of the circle passing through
these sites� and this circle contains no other sites in its interior	

Degree� If we assume that no four points are cocircular� then the vertices of the Voronoi
diagram all have degree three	

Convex hull� A cell of the Voronoi diagram is unbounded if and only if the corresponding
site lies on the convex hull	 �Observe that a point is on the convex hull if and only if it
is the closest point from some point at in
nity	�

Size� If n denotes the number of sites� then the Voronoi diagram is a planar graph �if we
imagine all the unbounded edges as going to a common vertex in
nity� with exactly n
faces	 It follows from Euler�s formula that the number of Voronoi vertices is at most
�n� � and the number of edges is at most �n� �	 �See the text for details	�

Delaunay Triangulation� Since the Voronoi diagram is a planar graph� we may naturally ask
what is the corresponding dual graph	 The vertices for this dual graph can be taken to be the
sites themselves	 Since �assuming general position� the vertices of the Voronoi diagram are of
degree three� it follows that the faces of the dual graph �excluding the exterior face� will be
triangles	 The resulting dual graph is a triangulation	 Among the many triangulations of a
set of points� this one has a number of nice geometric properties� and is called the Delaunay

triangulation	

Figure ��� Delaunay triangulation	

Delaunay triangulations have a number of interesting properties� that are consequences of the
structure of the Voronoi diagram	

Convex hull� The exterior face of the Delaunay triangulation is the convex hull of the point
set	

Circumcircle property� The circumcircle of any triangle in the Delaunay triangulation is
empty �contains no points of P �	

Empty circle property� Two sites pi and pj are connected by an edge in the Delaunay
triangulation� if and only if there is an empty circle passing through pi and pj 	 �One
direction of the proof is trivial from the circumcircle property	 In general� if there is an
empty circumcircle passing through pi and pj� then the center c of this circle is a point
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on the edge of the Voronoi diagram between pi and pj � because c is equidistant from each
of these points and there is no closer point	�

Closest pair property� The closest pair of points in P are Delaunay neighbors	

There are a number of other interesting properties of Delaunay triangulations that are not so
easy to prove	

Max�Min Angle criterion� Among all triangulations of the point set P � the Delaunay trian�
gulation maximizes the minimumangle in the triangulation	 �This only holds in dimension
��	

MST property� The minimum spanning tree of a set of points in the plane is a subgraph of
the Delaunay triangulation	

This provides a good algorithm for computing MST�s of points in the plane	 First� compute
the Delaunay triangulation of the point set �we will show this can be done in O�n logn� time��
and then in O�n logn� time you can compute the MST of this sparse graph	

Lecture ��� Fortune�s Voronoi Diagram Algorithm

�Tuesday� Nov �� �����
Reading� BKOS� Chapt �	

Computing Voronoi Diagrams� Last time we introduced the Voronoi diagram of a set of n points
P � fp�� � � � � png in the plane� called sites	 Recall that this is a planar straight�line subdivision
with n faces� each a �possibly unbounded� convex polygon	 The face� or Voronoi cell associated
with site pi� denoted V�pi�� consists of all the points in the plane that are strictly closer to
pi than to any other site	 Recall that the edge joining cells for pi and pj is the perpendicular
bisector between these points� and so a circle grown about any point on a Voronoi edge will
touch these two sites and contain no other site in its interior	 Also recall that the Voronoi
vertices are of degree three �assuming general position� and a cicle grown about this point will
touch all three sites an contain no other site in its center	

There are a number of algorithms for computing Voronoi diagrams	 Of course� there is a
naive O�n� logn� time algorithm� which operates by computing V�pi� by intersecting the n��
bisector halfplanes h�pi� pj�� for j �� i	 However� there are much more e�cient ways� which
run in O�n logn� time	 Since the convex hull can be extracted from the Voronoi diagram in
O�n� time� it follows that this is asymptotically optimal in the worst�case	

Note from the comments made last time about the Delaunay triangulation� that the Voronoi
diagram can either be computed directly� or else it can be built by 
rst constructing the
Delaunay triangulation of the sites� and then taking its dual graph �with some care as to
where the Voronoi vertices are to be placed�	 Historically� the 
rst algorithm for computing
Voronoi diagrams is the simple incremental algorithm that was used for computing Delaunay
triangulations	 It was known for many years that this is not asymptotically optimal� and
in fact ran in O�n�� time in the worst case� but this did not deter the practitioners who
were quite happy with it	 When computational geometry came along� a more complex� but
asymptotically superior O�n logn� algorithm was discovered	 This algorithm was based on
divide�and�conquer	 But it was rather complex� and somewhat di�cult to understand	 Later�
Steve Fortune invented a plane sweep algorithm for the problem� which provided a simpler
O�n logn� solution to the problem	 It is his algorithm that we will discuss	 Somewhat later
still� it was discovered that the incremental algorithm is actually quite e�cient� if it is run as
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a randomized incremental algorithm	 We will discuss this algorithm later� but in the form of
a Delaunay triangulation algorithm	

Before discussing Fortune�s algorithm� it is interesting to consider why this algorithm wasn�t
invented much earlier	 In fact� it is quite a bit trickier than any plane sweep algorithm we have
seen so far	 The key to any plane sweep algorithm is the ability to discover all �upcoming
events in an e�cient manner	 For example� in the line segment intersection algorithm we
considered all pairs of line segments that were adjacent in the sweep�line status� and inserted
their intersection point in the queue of upcoming events	 The problem with the Voronoi
diagram is that of predicting where the upcoming events will occur	 The reason is that a site
that lies ahead of the sweep line may generate a Voronoi vertex that lies behind the sweep line	
It is these �unanticipated events that make the design of a plane sweep algorithm challenging	

Beach line
Unanticipated
events

Sweep line

Figure ��� Plane sweep Voronoi diagrams	

Fortune�s Algorithm� Fortune made the clever observation of rather than computing the Voronoi
diagram through plane sweep in its 
nal form� instead to compute a �distorted but topolog�
ically equivalent version of the diagram	 This distorted version of the diagram was based on
a transformation that alters the way that distances are measured in the plane	 The resulting
diagram had the same structure as the Voronoi diagram� but its edges were parabolic arcs�
rather than straight line segments	 Once this distorted diagram was generated� it was an easy
matter to �undistort it to produce the correct Voronoi diagram	

Our presentation will be di�erent from Fortune�s	 Rather than distort the diagram� we can
think of this algorithm as distorting the sweep line	 Actually� we will think of two objects
that control the sweeping process	 First� there will be a horizontal sweep line� moving from
top to bottom	 We will also maintain a x�monotonic curve called a beach line �I guess because
it looks like waves rolling up on a beach	� The beach line is formed from parabolic arcs	 As
the sweep line moves downward� the beach line moves downward as well� but the beach line�s
shape depends on the locations of the sites	 We will see that the Voronoi diagram �grows out
of the beach line	

In order to make these ideas more concrete� recall that the problem with ordinary plane sweep
is that sites that lie below the sweep line may a�ect the diagram that lies above the sweep
line	 To avoid this problem� we will maintain only the portion of the diagram that cannot be
a�ected by anything that lies below the sweep line	 To do this� we will �cut the halfplane
lying above the sweep line into two regions� those points that are closer to some site p above
the sweep line than they are to the sweep line itself� and those points that are closer to the
sweep line than any site above the sweep line	 The set of points q that are equidistant from
the sweep line to their nearest site above the sweep line is called the beach line	 Observe that
for any point q above the beach line� we know that its closest point cannot be a�ected by any
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site that lies below the sweep line	 Hence� the portion of the Voronoi diagram that lies above
the beach line is �safe in the sense that we have all the information that we need in order to
compute it �without knowing abouts what points are still to appear below the sweep line�	

What does the beach line look like� We know from high school geometry that the set of
points that are equidistant from a site lying above a horizontal line and the line itself forms
a parabola that is open on top	 With a little analytic geometry� it is easy to show that the
parabola becomes �skinnier as the site becomes closer to the line� the parabola degenerates
into a vertical ray emanating from the site	 �You should work out the equations to see why
this is so	�

Thus� the beach line consists of the lower envelope of these parabolas	 �By the way� if we were
interested in computing the Voronoi diagram of line segments� the beach line is the boundary
of the Voronoi cell of the sweep line itself	� Because the parabolas are x�monotone� so is the
beach line	 Also observe that the vertex where two arcs of the beach line intersect� which we
call a breakpoint� is a point that is equidistant from two sites and the sweep line� and hence
must lie on some Voronoi edge	 In particular� if the beach line arcs corresponding to points pi
and pj share a common breakpoint on the beach line� then this breakpoint lies on the Voronoi
edge between pi and pj	 From this we have the following important characterization	

Lemma� The beach line is an x�monotone curve made up of parabolic arcs	 The breakpoints
of the beach line lie on Voronoi edges of the 
nal diagram	

Fortune�s algorithm consists of simulating the growth of the beach line as the sweep line moves
downward� and in particular tracing the paths of the breakpoints as they travel along the edges
of the Voronoi diagram	 Of course� as the sweep line moves the parabolas forming the beach
line change their shapes continuously	 As with all plane�sweep algorithms� we will be interested
in simulating the discrete event points where there is a �signi
cant event� that is� any event
that changes the topological structure of the beach line	 It turns out these signi
cant events
will be of two varieties�

Site events� When the sweep line passes over a new site a new arc will be inserted into the
beach line	

Vertex events� �What our text calls circle events	� When the length of a parabolic arc
shrinks to zero� the arc disappears and a new Voronoi vertex will be created at this point	

The algorithm consists of processing these two types of events	 As the Voronoi vertices are
being discovered by vertex events� it will be an easy matter to update a DCEL for the diagram
as we go� and so to link the entire diagram together	 For the rest of the lecture we focus on
the nature of the beach line� and how these events are discovered and processed	

Site events� A site event is generated whenever the sweep line passes over a site	 As we mentioned
before� at the instant that the sweep line touches the point� its associated parabolic arc will
degenerate to a vertical ray shooting up from the point to the current beach line	 As the sweep
line proceeds downwards� this ray will widen into an arc along the beach line	 To process a site
event we will determine the arc of the sweep line that lies directly above the new site	 �Let us
make the general position assumption that it does not fall immediately below a vertex of the
beach line	� We then split this arc of the beach line in two by inserting a new in
nitesimally
small arc at this point	 As the sweep proceeds� this arc will start to widen� and eventually will
join up with other edges in the diagram	 �See the 
gure below	�

It is important to consider whether this is the only way that new arcs can be introduced into
the sweep line	 In fact it is	 We will not prove it� but a careful proof is given in the text	 As a
consequence of this proof� it follows that the maximum number of arcs on the beach line can
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Figure ��� Site events	

be at most �n � �� since each new point can result in creating one new arc� and splitting an
existing arc� for a net increase of two arcs per point �except the 
rst�	

The nice thing about site events is that they are all known in advance	 Thus� after sorting
the points by y�coordinate� all these events are known	 However� the other type of event are
somewhat harder to predict	

Vertex events� In contrast to site events� vertex events are generated dynamically as the algorithm
runs	 As with the line segment plane sweep algorithm� the important idea is that each such
event is generated by objects that are neighbors on the beach line	 However� unlike the seg�
ment intersection where pairs of consecutive segments generated events� here triples of points
generate the events	

In particular� consider any three consecutive points pi� pj� and pk whose arcs appear consec�
utively on the beach line from left to right	 �See the 
gure below	� Further� suppose that the
circumcircle for these three sites lies at least partially below the current sweep line �meaning
that the Voronoi vertex has not yet been generated�� and that this circumcircle contains no
points lying below the sweep line �meaning that no future point will block the creation of the
vertex�	

Consider the moment at which the sweep line falls to a point where it is tangent to the lowest
point of this circle	 At this instant the circumcenter of the circle is equidistant from all three
sites and from the sweep line	 Thus all three parabolic arcs pass through this center point�
implying that the contribution of the arc from pj has disappeared from the beach line	 In
terms of the Voronoi diagram� the bisectors �pi� pj� and �pj � pk� have met each other at the
Voronoi vertex� and a single bisector �pi� pk� remains	

pi

pj

pk
pi pi

pj pj

pk pk

Figure ��� Vertex events	

Sweep�line algorithm� We can now present the algorithm is greater detail	 The main structures
that we will maintain are the following�
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Partial� Voronoi diagram� The partial Voronoi diagram that has been constructed so far
will be stored in a DCEL	 There is one technical di�culty caused by the fact that the
diagram contains unbounded edges	 To handle this we will assume that the entire diagram
is to be stored within a large bounding box	 �This box should be chosen large enough
that all of the Voronoi vertices 
t within the box	�

Beach line� The beach line is represented using a dictionary �e	g	 a balanced binary tree or
skip list�	 An important fact of the construction is that we do not explicitly store the

parabolic arcs	 They are just their for the purposes of deriving the algorithm	 Instead
for each parabolic arc on the current beach line� we store the site that gives rise to this
arc	 Notice that a site may appear multiple times on the beach line �in fact linearly many
times in n�	 But the total length of the beach line will never exceed �n� �	

Between each consecutive pair of sites pi and pj � there is a breakpoint	 Although the
breakpoint moves as a function of the sweep line� observe that it is possible to compute
the exact location of the breakpoint as a function of pi� pj� and the current y�coordinate of
the sweep line	 Thus� as with beach lines� we do not explicitly store breakpoints	 Rather�
we compute them only when we need them	

The important operations that we will have to support on the beach line are

��� Given a 
xed location of the sweep line� determine the arc of the beach line that in�
tersects a given vertical line	 This can be done by a binary search on the breakpoints�
which are computed �on the �y	 �Think about this	�

��� Compute predecessors and successors on the beach line	

��� Insert an new arc pi within a given arc pj� thus splitting the arc for pj into two	 This
creates three arcs� pj� pi� and pj 	

��� Delete an arc from the beach line	

It is not di�cult to modify a standard dictionary data structure to perform these opera�
tions in O�logn� time each	

Event queue� The event queue is a priority queue with the ability both to insert and delete
new events	 Also the event with the largest y�coordinate can be extracted	 For each site
we store its y�coordinate in the queue	

For each consecutive triple pi� pj� pk on the beach line� we compute the circumcircle of
these points	 �We�ll leave the messy algebraic details as an exercise� but this can be done
in O��� time	� If the lower endpoint of the circle �the minimum y�coordinate on the
circle� lies below the sweep line� then we create a vertex event whose y�coordinate is the
y�coordinate of the bottom endpoint of the circumcircle	 We store this in the priority
queue	 Each such event in the priority queue has a cross link back to the triple of sites
that generated it� and each consecutive triple of sites has a cross link to the event that it
generated in the priority queue	

The algorithm proceeds like any plane sweep algorithm	 We extract an event� process it� and
go on to the next event	 Each event may result in a modi
cation of the Voronoi diagram and
the beach line� and may result in the creation or deletion of existing events	

Here is how the two types of events are handled�

Site event� Let pi be the current site	 We shoot a vertical ray up to determine the arc that
lies immediately above this point in the beach line	 Let pj be the corresponding site	
We split this arc� replacing it with the triple of arcs pj� pi� pj which we insert into the
beach line	 Also we create new �dangling� edge for the Voronoi diagram which lies on the
bisector between pi and pj	 Any old triple that involved pj as its center arc is deleted
from the priority queue� and we generate new events for each of the possible three new
triples that result from this insertion	
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Vertex event� Let pi� pj � and pk be the three sites that generate this event �from left to
right�	 We delete the arc for for pj from the beach line	 We create a new vertex in the
Voronoi diagram� and tie the edges for the bisectors �pi� pj�� �pj � pk� to it� and start a new
edge for the bisector �pi� pk� that starts growing down below	 Finally� we delete any events
that arose from triples involving this arc of pj� and generate new events corresponding to
consecutive triples involving pi and pk �there are two of them�	

The analysis follows a typical analysis for plane sweep	 Each event involves O��� processing
time plus a constant number accesses to the various data structures	 Each of these accesses
takes O�logn� time� and the data structures are all of size O�n�	 Thus the total time is
O�n logn�� and the total space is O�n�	

Lecture �� Delaunay Triangulations

�Thursday� Nov 	� �����
Special Announcement� Next Tuesday� Nov ��� class will meet in AVW ���� to attend Prof	
De�oriani�s lecture on multiresolution surface representations	 You will be responsible for material
presented in De�oriani�s talk	
Reading� BKOS� Chapt �	

The Delaunay Triangulation� Last time we gave an algorithm for computing Voronoi diagrams	
Today we consider the related structure� called a Delaunay triangulation	 Recall that a trian�
gulation of a point set P is a straight line planar subdivision whose vertices are the points of
P � and which is maximal in the sense that no edge may be added without violating planarity	
This implies that very internal face of this subdivision is a triangle� and the external face is
bounded by the boundary of the convex hull of the point set	

There are many possible triangulations of a given point set� but one stands out as having the
nicest geometric properties	 This is the Delaunay triangulation	 The Delaunay triangulation
can be de
ned in a number of equivalent ways	 The de
nition that we use is that it is the
straight�line dual of the Voronoi diagram of the sites	 In particular� the vertices are the sites
themselves� and two sites are adjacent in the triangulation if and only if their Voronoi cells
share a common edge	

Figure ��� Delaunay Triangulation	

If the sites are not in general position� in the sense that four or more are cocircular� then the
Delaunay triangulation may not be a triangulation at all� but just a planar graph �since the
Voronoi vertex that is incident to four or more Voronoi cells will induce a face whose degree is
equal to the number of such cells�	 In this case the more appropriate term would be Delaunay

graph	 However� it is common to either assume the sites are in general position �or to enforce
it through some sort of symbolic perturbation� or else to simply triangulate the faces of degree
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four or more in any arbitrary way	 Henceforth we will assume that sites are in general position�
so we do not have to deal with these messy situations	

Given a point set P with n sites where there are h sites on the convex hull� it is not hard to
prove that the Delaunay triangulation has �n � �� h triangles �as we saw on the exam� and
�n� �� h edges �by a similar proof�	 Recall that in all planar graphs the average degree of a
vertex is a constant �at most ��	

Also it is not hard to prove that the graph is planar	 �We know that the graph is topologically
planar� since it is the dual of a planar graph� but this only implies that there is some way to
draw the edges so they do not cross	 It would still need to be proven that if the edges are
drawn as straight line segments� then they still do not cross	 See the text for details	�

An equivalent condition that we mentioned earlier is that every triangle in the Delaunay
triangulation has the property� called the empty circle property� that the circumcircle of the
three vertices of the triangle does not contain any other site of P in its interior	

Maximizing Angles and Edge Flipping� One of the interesting properties of Delaunay triangu�
lations is that among all triangulations� the Delaunay triangulation maximizes the minimum
angle	 In fact a much stronger statement holds as well	 Among all triangulations with the
same smallest angle� the Delaunay triangulation maximizes the second smallest angle� and so
on	 In particular� any triangulation can be associated with a sorted angle sequence� that is� the
increasing sequence of angles ���� ��� � � � � �m� appearing in the triangles of the triangulation	
�Note that the length of the sequence will be the same for all triangulations of the same point
set� since the number depends only on n and h	�

Theorem� Among all triangulations of a given point set� the Delaunay triangulation has the
lexicographically maximum angle sequence	

Before getting into the proof� we should recall a few basic facts about angles from basic
geometry	 First� recall that if we consider the circumcircle of three points� then each angle of
the resulting triangle is exactly half the angle of the minor arc subtended by the opposite two
points along the circumcircle	 It follows as well that if a point is inside this circle then it will
subtend a larger angle and a point that is outside will subtend a smaller angle	 This in the

gure part �a� below� we have � � � � �	

θab

θbc

θcd

θda

abϕ
bcϕ

cdϕ

daϕ
θ1

θ2
θ3

(a) (b) (c)
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c

d

cb

a a

b

Figure ��� Angles and edge �ips	

We will not give a formal proof of the theorem	 �One appears in the text	� The main idea
is to show that for any triangulation that fails to satisfy the empty circle property� it is
possible to perform a local operation� called an edge �ip� which increases the lexicographical
sequence of angles	 An edge �ip is an important fundamental operation on triangulations
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in the plane	 Given two adjacent triangles �abc and �cda� such that their union forms a
convex quadrilateral abcd� the edge �ip operation replaces the diagonal ac with bd	 �Note
that it is only possible when the quadrilateral is convex	� Suppose that the initial triangle
pair violates the empty circle condition� in that point d lies inside the circumcircle of �abc
�implying equivalently that b lies inside the circumcircle of �cda�� then if we �ip the edge
it will follows that the two circumcircles of the two resulting triangles� �abd and �bcd are
now empty �relative to these four points�� and the observation above about circles and angles
proves that the minimum angle increases at the same time	 In particular� in the 
gure above�
we have

�ab � ab �bc � bc �cd � cd �da � da�

There are two other angles that need to be compared as well �can you spot them��� but even
though their values might decrease it can be seen that neither of them is the minimum angle
after the swap �can you see why��	

Since there are only a 
nite number of triangulations� this process must eventually terminate
with the lexicographically maximum triangulation� and this triangulation must satisfy the
empty circle condition� and hence is the Delaunay triangulation	

Randomized Algorithm� This observation provides a basis for a simple but potentially very slow
algorithm	 Simply build any initial triangulation �e	g the plane sweep triangulation presented
in the exam� and then start performing edge �ips until every pair of triangles satis
es the empty
circle property	 However� there are no good bounds on the number of edge �ips required� or
what a good strategy would be for selecting them	 Instead� we will present a simple randomized
O�n logn� expected time algorithm for constructing Delaunay triangulations for n sites in the
plane	 The algorithm is remarkably similar in spirit to the trapezoidal map algorithm in
that builds its own point�location data structure as a side e�ect	 We will not discuss the
point�location data structure in detail� but the details are easy to 
ll in	

As with any randomized incremental algorithm� the idea is to insert sites in random order�
one at a time� and update the triangulation with each new addition	 The issues involved with
the analysis will be showing that the number of structural changes in the diagram is not very
large �it will be O��� in the expected case for each insertion�	 As with other incremental
algorithm� we need some way of keeping track of where newly inserted sites are to be placed
in the diagram	 Unlike the trapezoidal map algorithm� we will not create a data structure�
but will instead use a simpler method that puts each of the uninserted points into buckets
according to the triangle that it overlaps in the current triangulation	 In this case� we will
need to argue that the number of times that a site is rebucketed on average is not too large
�it will be O�logn� in the expected case�	

Incremental update� The basic issue in the design of the algorithm is how to update the trian�
gulation when a new site is added	 In order to do this� we 
rst investigate the basic properties
of a Delaunay triangulation	 Recall that a triangle �abc is in the Delaunay triangulation� if
and only if the circumcircle of this triangle contains no other site in its interior	 �Recall that
we make the general position assumption that no four sites are cocircular	� How to we test
whether a site d lies within the interior of the circumcircle of �abc� It turns out that this can
be reduced to a determinant computation	 It can be shown that a site d lies in the circumcircle
determined by the counterclockwise triangle �abc if and only if the following determinant is
positive	 This is called the incircle test	 We will assume that this primitive is available to us	

in�a� b� c� d� � det

�
BB�

ax ay a�x � a�y �
bx by b�x � b�y �
cx cy c�x � c�y �
dx dy d�x � d�y �

�
CCA � ��
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When we add the next site� pi� the problem is to convert the current Delaunay triangulation
into a new Delaunay triangulation	 This will be done by creating an illegal �nonDelaunay�
triangulation containing the new point� and then incrementally �
xing this triangulation to
restore the Delaunay properties	 The fundamental changes will be� ��� adding a site to the
middle of a triangle� and creating three new edges� and ��� performing an edge �ip	 Both of
these operations can be performed in O��� time� assuming that the triangulation is maintained�
say� as a DCEL	

Figure ��� Basic triangulation changes	

Here is how the algorithm works	 We start with an initial triangulation	 Guibas� Knuth and
Sharir suggest starting with the triangle of three sites �at in
nity	 �Not just any enclosing
triangle will work� since we need to be sure that the newly added vertices will not a�ect the
structure of the circumcircles� and hence the interior structure of the triangulation�	 This
guarantees that all sites to be added� will lie within some triangle of the existing triangulation	

The sites are added in random order	 When a new site p is added� we 
nd the triangle �abc
of the current triangulation that contains this site� insert the site in this triangle� and join
this site to the three surrounding vertices	 This creates three new triangles� �pab� �pbc� and
�pca� each of which may or may not satisfy the empty�circle condition	 How do we test this�
For each of the triangles that have been added� we check the vertex of the triangle that lies
on the other side of the edge that does not include p	 If this vertex fails the incircle test� then
we swap the edge �creating two new triangles that are adjacent to p� and repeat the same test
with these triangles	 An example is shown below	

Triangle pab is illegal. Triangles pdb and pbc are illegal. Final triangulation.

p

b

c a

b

c

p

a

d

b

c

p

a

d

Figure ��� Point insertion	

The following is a description of the algorithm �Guibas� Knuth� and Sharir give a nonrecursive
version�	 The current triangulation is kept in a global data structure	 The edges in the
following algorithm are actually pointers to the quad�edge data structure	

Insert�p� f
Find the triangle �abc containing p"
Insert edges pa� pb� and pc into triangulation"
SwapTest�ab�"
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SwapTest�bc�"
SwapTest�ca�"

g
SwapTest�ab� f

if �ab is an edge on the exterior face� return"
Let d be the vertex to the right of edge ab"
if �in�p� a� b� d� f

Replace edge ab with pd"
SwaptTest�ad�"
SwaptTest�db�"

g
g

As you can see� the algorithm is very simple	 The only things that have to be implemented
are ��� the DCEL �or other data structure� to store the triangulation� ��� the incircle test� and
��� locating the triangle that contains p	 Tasks ��� and ��� are straightforward	

Task ��� can be accomplished by one of two means	 Our text discusses the idea of building a
point�location data structure for dealing with this	 The other� somewhat simpler� approach is
based on a simple bucketing idea which involves the same total amount of work� but it a bit
easier to implement	 Think of each triangle of the current triangulation as a bucket that holds
the future sites that lie within this triangle and are yet to be inserted	 Whenever an edge
is �ipped� or when a triangle is split into three triangles through point insertion� then some
triangles are destroyed and are replaced by a constant number of new triangles	 When this
happens� all the sites in the buckets associated with the old triangles are rebucketed according
to the new triangles that they lie in	

There is only one major issue in establishing the correctness of the algorithm	 When we
performed empty�circle tests� we only tested ��� triangles containing the site p� and ��� only
sites that lay on the opposite side of an edge of such a triangle	 To establish ���� observe that
it su�ces to consider only triangles containing p because since p is the only newly added site�
it is the only site that can cause a violation of the empty�circle property	

To establish ��� we argue that if for every site d� which is opposite from p along some edge ab�
lies outside the circumcircle of pab� then all these circumcircles are empty	 A complete proof
takes some e�ort� but here is a simple justi
cation	 What could go wrong� It might be that d
lies outside the circumcircle� but there is some other site �e	g	 a vertex e of a triangle adjacent
to d that lies inside the circumcircle�	 This is illustrated in the following 
gure	 We claim that
this cannot happen	 It can be shown that if e lies within the circumcircle of �pab� then a
must lie within the circumcircle of �bde	 �The argument is a exercise in high school geometry	�
However� this violates the assumption that the initial triangulation �before the insertion of p�
was a Delaunay triangulation	

Analysis� To analyze the algorithm we need to bound two things� ��� how many changes are made
in the triangulation on average with the addition of each new site� and ��� how much e�ort is
spent in rebucketing sites	

We argue ��� that the expected number of edge changes with each insertion is O��� by a simple
application of backwards analysis	 Observe that whenever the triangulation performs an edge
swap� it always adds a new edge to p	 Therefore the total number of changes made in the
triangulation for the insertion of p is equal to the degree of p after the insertion is completed	
By backwards analysis� we know that each of the sites that are currently in the triangulation
are equally likely to be deleted	 �With the exception of the three initial sites at in
nity� but
they only slightly bias this argument� so we ignore them	�

��
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Figure ��� Proof of su�ciency of testing neighboring sites	

By the argument just given� we know that the total number of edge changes needed if p were
the last site added is just the degree of p in the resulting triangulation	 However� we also know
that the average degree of a vertex in a planar graph is constant	 Therefore� the expected
number of changes to the structure is O��� per insertion	

Next we argue ��� that the expected number of times that a site is rebucketed �as to which
triangle it lies in� is O�logn�	 Again this is a standard application of backwards analysis	
Consider the i�th stage of the algorithm �after i sites have been inserted into the triangulation�	
Among the remaining n� i sites� we claim that the probability that this site changes triangles
is at most ��i	 Observe that when we insert a new site p� all of the newly created triangles
include the site p	 Each triangle in the current triangulation is determined by exactly � sites	 If
none of these � was the last site to be inserted� then no �uninserted� site in this triangle needs
to be rebucketed	 Thus� for each of the remaining n � i sites� the probability that this site
needs to be rebucketed is at most ��i	 �The probability is independent of the site distribution�
and depends only on the sequence with which the sites are inserted	� Thus� the total expected
number of rebucketings is given by the sum

nX
i��

�

i
�n � i� �

nX
i��

�

i
n � �n

nX
i��

�
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 �n lnn�

Lecture ��� DeFloriani�s Lecture

�Tuesday� Nov ��� �����
Special Announcement� Today�s class will meet in AVW ���� to attend Prof	 De�oriani�s
lecture on multiresolution surface representations	 You will be responsible for material presented in
De�oriani�s talk	

Lecture ��� Line Arrangements

�Thursday� Nov ��� �����
Reading� BKOS� Chapt �	

Arrangements� So far we have studied a few of the most important �in my opinion� geometric
structures� convex hulls and Voronoi diagrams and Delaunay triangulations	 The next most
important structure �again in my opinion� in computational geometry is that of a line ar�

rangement	 As with hulls and Voronoi diagrams� it is possible to de
ne arrangements in any
dimension� but we will concentrate on the plane	 As with Voronoi diagrams� a line arrangement
is a polygonal subdivision of the plane	 Unlike most of the structures we have seen up to now�
a line arrangement is not de
ned in terms of a set of points� but rather in terms of a set L of
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lines	 However� line arrangements are used mostly for solving problems on point sets	 The con�
nection is that the arrangements are typically constructed in the dual plane	 We will begin by
de
ning arrangements� discussing their combinatorial properties and how to construct them�
and 
nally discuss applications of arrangements to other problems in computational geometry	

Before discussing algorithms for computing arrangements and applications� we 
rst provide
de
nitions and some important theorems that will be used in the construction	 A 
nite set L
of lines in the plane subdivides the plane	 The resulting subdivision is called an arrangement�
denoted A�L�	 Arrangements can be de
ned for curves as well as lines� and can also be de
ned
for �d� ���dimensional hyperplanes in dimension d	 But we will only consider the case of lines
in the plane here	

In the plane� the arrangement de
nes a planar graph whose vertices are the points where two
or more lines intersect� edges are the intersection free segments �or rays� of the lines� and faces
are �possibly unbounded� convex regions containing no line	 An example is shown below	

face

edge

vertex

bounding box

Figure ��� Arrangement of lines	

An arrangement is said to be simple if no three lines intersect at a common point	 We will
make the usual general position assumptions that no three lines intersect in a single point	
This assumption is easy to overcome by some sort of symbolic perturbation	

An arrangement is not formally a planar graph� because it has unbounded edges	 We can

x this �topologically� by imagining that a vertex is added at in
nity� and all the unbounded
edges are attached to this vertex	 A somewhat more geometric way to 
x this is to imagine
that there is a bounding box which is large enough to contain all the vertices� and we tie all
the unbounded edges o� at this box	 Rather than computing the coordinates of this huge
box �which is possible in O�n�� time�� it is possible to treat the sides of the box as existing
at in
nity� and handle all comparisons symbolically	 For example� the lines that intersect the
right side of the �box at in
nity have slopes between �� and ��� and the order in which they
intersect this side �from top to bottom� is in decreasing order of slope	 �If you don�t see this
right away� think about it �

The combinatorial complexity of an arrangement is the total number of vertices� edges� and
faces in the arrangement	 The following shows that all of these quantities are O�n��	

Theorem� Give a set of n lines L in the plane in general position�

�i� the number of vertices in A�L� is
�
n
�

�
�

�ii� the number of edges in A�L� is n�� and

�iii� the number of faces in A�L� is
�
n
�

�
� n� �	

Proof� The fact that the number of vertices is
�
n
�

�
is clear from the fact that each pair of lines

intersects in a single point	 To prove that the number of edges is n�� we use induction	
The basis case is trivial �� line and � edge�	 When we add a new line to an arrangement
of n� � lines �having �n� ��� edges by the induction hypothesis� we split n� � existing
edges� thus creating n�� new edges� and we add n new edges from the n�� intersections
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with the new line	 This gives a total of �n� ��� � �n� �� � n � n�	 The number of faces
comes from Euler�s formula� v � e � f � � �with the little trick that we need to create
one extra vertex to attach all the unbounded edges to�	

Incremental Construction� Arrangements are used for solving many problems in computational
geometry	 But in order to use arrangements� we 
rst must be able to construct arrangements	
We will present a simple incremental algorithm� which builds an arrangement by adding lines
one at a time	 Unlike most of the other incremental algorithms we have seen so far� this one
will not require randomization	 In fact� its asymptotic running time will be the same� O�n���
no matter what order we insert the lines	 This is asymptotically optimal� since there this is
the size of the arrangement	 The algorithm will also require O�n��� since this is the amount
of storage needed to store the 
nal result	 �Later we will consider the question of whether it
is possible to traverse an arrangement without actually building it	�

As usual� we will assume that the arrangement is represented in any reasonable data structure
for planar graphs� a DCEL for example	 Let L � f	�� 	�� � � � � 	ng denote the lines	 We will
simply add lines one by one to the arrangement	 �The order does not matter	� We will show
that the i�th line can be inserted in O�i� time	 If we sum over i� this will give O�n�� total
time	

Suppose that the 
rst i � � lines have already been added� and consider the e�ort involved
in adding 	i	 Recall our assumption that the arrangement is assumed to lie within a large
bounding box	 Since each line intersects this box twice� the 
rst i � � lines have subdivided
the boundary of the box into ��i � �� edges	 We determine where 	i intersects the box� and
which of these edge it crosses intersects	 This will tell us which face of the arrangement 	i 
rst
enters	

Next we trace the line through the arrangement� from one face to the next	 Whenever we enter
a face� the main question is where does the line exit the face� We answer the question by a
very simple strategy	 We walk along the edges face� say in a counterclockwise direction �recall
that a DCEL allows us to do this� and as we visit each edge we ask whether 	i intersects this
edge	 When we 
nd the edge through which 	i exits the face� we jump to the face on the other
side of this edge �again the DCEL supports this� and continue the trace	 This is illustrated in
the 
gure below	

ll

the zonetraversing the arrangement

Figure ��� Traversing an arrangement and zones	

Once we know the points of entry and exit into each face� the last matter is to update the
DCEL by inserting edges for each entry�exit pair	 This is easy to handle in constant time� by
adjusting the appropriate pointers in the DCEL	 �Details are left as an exercise	�

Clearly the time that it takes to perform the insertion is proportional to the total number
of edges that have been traversed in this tracing process	 A naive argument says that we
encounter i � � lines� and hence pass through i faces �assuming general position�	 Since each
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face is bounded by at most i lines� each facial traversal will take O�i� time� and this gives a
total O�i��	 Hey� what went wrong� Above we said that we would do this in O�i� time	 The
claim is that the traversal does indeed traverse only O�i� edges� but to understand why� we
need to delve more deeply into a concept of a zone of an arrangement	

Zone Theorem� The most important combinatorial property of arrangements �which is critical to
their e�cient construction� is a rather surprising result called the zone theorem	 Given an
arrangement A of a set L of n lines� and given a line 	 that is not in L� the zone of 	 in A�	��
denoted ZA�	�� is the set of faces whose closure intersects 		 The 
gure above illustrates a
zone for the line 		 For the purposes of the above construction� we are only interested in the
edges of the zone that lie below 	i� but if we bound the total complexity of the zone� then this
will be an upper bound on the number of edges traversed in the above algorithm	

The combinatorial complexity of a zone �as argued above� is O�n��	 The Zone theorem states
that the complexity is actually much smaller� only O�n�	

Theorem� �The Zone Theorem� Given an arrangement A�L� of n lines in the plane� and given
any line 	 in the plane� the total number of edges in all the cells of the zone ZA�	� is at
most �n	

Proof� As with most combinatorial proofs� the key is to organize everything so that the
counting can be done in an easy way	 Note that this is not trivial� because it is easy to
see that any one line of L might contribute many segments to the zone of 		 The key in
the proof is 
nding a way to add up the edges so that each line appears to induce only a
constant number of edges into the zone	

The proof is based on a simple inductive argument	 We will 
rst imagine� through a
suitable rotation� that 	 is horizontal� and further that none of the lines of L is horizontal
�through an in
nitesimal rotation�	 We split the edges of the zone into two groups� those
that bound some face from the left side and those that bound some face from the right
side	 More formally� since each face is convex� if we split it at its topmost and bottommost
vertices� we get two convex chains of edges	 The left�bounding edges are on the left chain
and the right�bounding edges are on the right chain	 We will show that there are at most
�n lines that bounded faces from the left	 �Note that an edge of the zone that crosses 	
itself contributes only once to the complexity of the zone	 In the book�s proof they seem
to count this edge twice� and hence their bound they get a bound of �n instead	 We will
also ignore the edges of the bounding box	�

For the basis case� when n � �� then there is exactly one left bounding edge in 	�s zone�
and � � �n	 Assume that the hypothesis is true for any set of n � � lines	 Consider the
rightmost line of the arrangement to intersect 		 Call this 	�	 �Selecting this particular
line is very important for the proof	� Suppose that we consider the arrangement of the
other n�� lines	 By the induction hypothesis there will be at most ��n��� left�bounding
edges in the zone for 		

Now let us add back 	n and see how many more left�bounding edges result	 Consider the
rightmost face of the arrangement of n�� lines	 Note that all of its edges are left�bounding
edges	 Line 	� will intersect 	 within this face	 Let ea and eb denote the two edges of
this that 	� intersects� one above 	 and the other below 		 The insertion of 	� creates a
new left bounding edge along 	� itself� and splits the left bounding edges ea and eb into
two new left bounding edges for a net increase of three edges	 Observe that 	� cannot
contribute any other left�bounding edges to the zone� because �depending on slope� either
the line supporting ea or the line supporting eb blocks 	��s visibility from from 		 �Note
that it might provide right�bounding edges� but we are not counting them here	� Thus�
the total number of left�bounding edges on the zone is at most ��n � �� � � � �n� and
hence the total number of edges is at most �n� as desired	
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Figure ��� Proof of the Zone Theorem	

Lecture ��� Applications of Arrangements

�Tuesday� Nov �
� �����
Reading� This material is not covered in the text	
Revised� Nov ��	 Added material about angular sorting	

Sweeping Arrangements� Last time we showed how to construct an arrangement of lines in the
plane in O�n�� time	 Since an arrangement is of size O�n��� this is optimal	 Usually it is not
su�cient just to build the arrangement� but necessary to traverse the arrangement as well	 In
some instances� any graph traversal will su�ce	 For other problems it is nice to perform the
traversal in some order� for example as a plane sweep from left to right	

If an arrangement is to be built just so it can be swept� then maybe you didn�t need to construct
the entire arrangement after all	 You can just perform the plane sweep on the lines� exactly as
we did for the line segment intersection algorithm	 Assuming that we are sweeping from left to
right� the initial position of the sweep line is at x � �� �computed symbolically�	 The sweep
line status maintains the lines in top to bottom order according to their intersection with the
sweep line	 The initial order is according to increasing order of slope	 Then the sweep line
proceeds exactly as it did in the algorithm for determining line segment intersections� but the
only events are intersection events �since there are no endpoints�	 The sweep ends when the
last intersection event is processed	 Sweeping an arrangement in this way takes O�n� logn�
time� but only O�n� space �since we need only maintain the current sweep line�	 For many
applications involving arrangements� this o�ers a reasonable tradeo� between time and space	

But is the O�logn� factor necessary� In many applications involving plane sweep it is not
necessary to sweep in strictly left�to�right order� as long as the vertices lying on each line of
the arrangement are swept from left�to�right	 In this case we can save the O�logn� factor by
constructing the arrangement� then �thinking of the edges as being directed from left to right�
perform a topological sort of the vertices	 A topological sort of an acyclic directed graph is
an ordering of the vertices of a directed graph such that for each edge �u� v� in the graph� u
appears before v in the order	 It is well known that the vertices of a graph can be topologically
sorted in time that is proportional to the size of the graph� or O�n�� in this case	 �See CLR
for details	� Given the topological ordering of the vertices of the arrangement� we can sweep
the arrangement by simply extracting the vertices in this order	 This gives an O�n�� time and
O�n�� space algorithm for sweeping arrangements	

Is it possible to sweep arrangements in O�n�� time but with only O�n� space� It turns out
that the answer is yes	 There is an algorithm called topological plane sweep which incorporates
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Figure ��� One possible topological ordering of the vertices of an arrangement	

the topological nature of the above sweeping algorithm with the incremental nature of plane
sweep	

Applications of Arrangements and Duality� The computational and mathematical tools that
we have developed with geometric duality and arrangements allow a large number of problems
to be solved	 Here are some examples	 Unless otherwise stated� all these problems can be
solved in O�n�� time and O�n�� space by constructing a line arrangement� or in O�n�� time
and O�n� space through topological plane sweep	

General position test� Given a set of n points in the plane� determine whether any three
are collinear	

Minimum area triangle� Given a set of n points in the plane� determine the minimum area
triangle whose vertices are selected from these points	

Minimum k�corridor� Given a set of n points� and an integer k� determine the narrowest
pair of parallel lines that enclose at least k points of the set	 The distance between the
lines can be de
ned either as the vertical distance between the lines or the perpendicular
distance between the lines	

Visibility graph� Given line segments in the plane� we say that two points are visible if the
interior of the line segment joining them intersects none of the segments	 Given a set
of n non�intersecting line segments� compute the visibility graph� whose vertices are the
endpoints of the segments� and whose edges a pairs of visible endpoints	

Maximum stabbing line� Given a set of n line segments in the plane� determine whether
the line that stabs �intersects� the maximum number of these line segments	

Hidden surface removal� Given a set of n non�intersecting polygons in ��space� imagine
projecting these polygon onto a plane �either orthogonally or using perspective�	 Deter�
mine which portions of the polygons are visible from the viewpoint under this projection	

Note that in the worst case� the complexity of the 
nal visible scene may be as high as
O�n��� so this is asymptotically optimal	 However� since such complex scenes rarely occur
in practice� this algorithm is really only of theoretical interest	

Ham Sandwich Cut� Given n red points and m blue points� 
nd a single line that simul�
taneously bisects these point sets	 It is a famous fact from mathematics �called the
Ham�Sandwich Theorem� that such a line always exists	 If the point sets are separated
by a line� then this can be done in time� O�n�m�� space� O�n� m�	

Sorting all angular sequences� Here is a natural application of duality and arrangements that
turns out to be important for the problem of computing visibility graphs	 Consider a set of n
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points in the plane	 For each point p in this set we want to perform an angular sweep� say in
counterclockwise order� visiting the other n� � points of the set	 For each point� it is possible
to compute the angles between this point and the remaining n� � points and then sort these
angles	 This would take O�n logn� time per point� and O�n� logn� time overall	

With arrangements we can speed this up to O�n�� total time� getting rid of the extra O�logn�
factor	 Here is how	 Recall the duality transformation described in Lecture �	 A point
p � �px� py� and line 	 � �y � ax� b� in the primal plane are mapped through duality to dual
point 	� and dual line p� by the following relationship	

	� � �a� b�

p� � �b � pxa � py��

Observe that the a�coordinate in the dual plane corresponds to the slope of a line in the primal
plane	 Suppose that p is the point that we want to sort around� and let p�� p�� � � � � pn be the
points in 
nal angular order about p	
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Figure ��� Arrangements and angular sequences	

Consider the arrangement de
ned by the dual lines p�i 	 How is this order revealed in the
arrangement� Consider the dual line p�� and its intersection points with each of the dual lines
p�i 	 These form a sequence of vertices in the arrangement along p�	 Consider this sequence
ordered from left to right	 It would be nice if this order were the desired circular order� but
this is not quite correct	 The a�coordinate of each of these vertices in the dual arrangement is
the slope of some line of the form ppi	 Thus� the sequence in which the vertices appear on the
line is a slope ordering of the points about pi� not an angular ordering	

However� given this slope ordering� we can simply test which primal points lie to the left of p
�that is� have a smaller x�coordinate in the primal plane�� and separate them from the points
that lie to the right of p �having a larger x�coordinate�	 We partition the vertices into two
sorted sequences� and then an concatenate these two sequences� with the points on the right
side 
rst� and the points on the left side later	 The resulting is an angular sequence starting
with the angle ��� degrees and proceeding up to ���� degrees	

Thus� once the arrangement has been constructed� we can reconstruct each of the angular
orderings in O�n� time� for a total of O�n�� time	

Lecture ��� More Applications of Arrangements

�Thursday� Nov �� �����
Reading� The material on discrepancies is in Chapt � of BKOS	 The other material is not covered
in the text	
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Applications of Arrangements� Today we will discuss a few of applications of line arrangements
in the plane	 This is to give a feel for how one converts problems into dual form and then uses
arrangements to solve these problems	 Recall the duality operator from Lecture �	 We de
ned
a function that maps points in the primal plane to lines in the dual plane� and lines in the
primal plane to points in the dual plane	 We denoted it using a asterisk ��� as a superscript	
Thus� given point p � �px� py� and line 	 � �y � ax � b� in the primal plane we de
ne 	� and
p� to be a point and line respectively in the dual plane de
ned by�

	� � �a� b�

p� � �b � pxa � py��

The main property of this transformation was the following order reversing property� a point
p lies above�on�below line 	 in the primal plane if and only if line p� passes below�on�above
point 	� in the dual plane� respectively	

Narrowest ��corridor� As mentioned above� in this problem we are given a set P of n points
in the plane� and an integer k� � � k � n� and we wish to determine the narrowest pair of
parallel lines that enclose at least k points of the set	 In this case we will de
ne the vertical
distance between the lines as the distance to minimize	 �It is easy� but a bit tricky to adapt
the algorithm for perpendicular distance	�

To simplify the presentation� we assume that k � �	 The generalization to general k is an
exercise	 We will assume that no three points of P are collinear	 This will allow us to assume
that the narrowest corridor contains exactly three points and has width strictly greater than
zero	 �Observe that if three points were collinear� then they would correspond to three lines
that intersect at a common vertex in the arrangement� which could be tested as we build the
arrangement	� We will also assume that no two points have the same x�coordinate	 The dual
transformation that we consider cannot represent vertical lines� but this assumption will imply
that the solution is not a vertical line	 We could 
x this by using homogeneous coordinates�
but we will not worry about it now	

If we dualize the points of P � then in dual space we have a set L of n lines� f	�� 	�� � � � � 	ng	 The
slope of each dual�line is the x�coordinate of the corresponding point of P � and its y�intercept
is the negation of the point�s y�coordinate	

A narrowest ��corridor in the primal plane consists of two parallel lines 	a and 	b in primal
space	 Their duals 	�a and 	�b are dual points� which have the same x�coordinates �since the
lines are parallel�� and the vertical distance between these points� is the di�erence in the y�
intercepts of the two primal lines	 Thus the vertical width of the corridor� is the vertical length
of the line segment	

In the primal plane� there are exactly three points lying in the corridor� that is� there are three
points that are both above 	b and below 	a	 Thus� by the order reversing property� in the dual
plane� there are three dual lines that pass both below point 	�b and above 	�a	 Combining all
these observations it follows that the dual formulation of the narrowest ��corridor problem is
the following�

Shortest vertical ��stabber� Given an arrangement of n lines� determine the shortest ver�
tical segment that stabs three lines of the arrangement	

It is easy to show �by a simple perturbation argument� that the shortest vertical ��stabber
may be assumed to have one of its endpoints on a vertex of the arrangement� implying that the
other endpoint lies on the line of the arrangement lying immediately above or below this vertex	
�In the primal plane the signi
cance is that we can assume that the minimum ��corridor one
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Figure ��� Narrowest ��corridor� primal and dual form	

of the lines passes through � of the points� and the other passes through a third point� and
there are no points within the interior of the corridor	 This is shown in the 
gure below	

We can compute the minimum ��stabber in an arrangement� by a simple plane sweep of the
arrangement �using a vertical sweep line�	 Whenever we encounter a vertex of the arrangement�
we consider the distance to the edge of the arrangement lying immediately above this vertex
and the edge lying immediately below	 We can solve this problem by topological plane sweep
in O�n�� time and O�n� space	

We can also solve this by constructing the arrangement and the computing the �vertical�
trapezoidal map	 Each trapezoidal edge will correspond to a corridor	 The shortest such edge
is the 
nal answer	 This leads to an O�n�� time and space solution	

Figure ��� Narrowest corridor and trapezoidal maps	

Maximum Discrepancy� Next we consider a problem derived from computer graphics and sam�
pling	 Suppose that we are given a collection of n points S lying in a unit square U � ��� ���	
We want to use these points for random sampling purposes	 In particular� the property that
we would like these points to have is that for any halfplane h� we would like the size of the
fraction of points of P that lie within h should be roughly equal to the area of intersection of
h with U 	 That is� if we de
ne ��h� to be the area of h � U � and �S�h� � jS � hj�jSj� then
we would like ��h� 
 �S�h� for all h	 This property is important when point sets are used for
things like sampling and Monte�Carlo integration	

To this end� we de
ne the discrepancy of S with respect to a halfplane h to be

!S�h� � j��h�� �S�h�j�

For example� in the 
gure� the area of h �U is ��h� � ������ and there are � out of �� points
in h� thus �S�h� � ���� � �����	 Thus the discrepancy of h is j������ �����j � �����	 De
ne
the halfplane discrepancy of S to be the maximum �or more properly the supremum� or least
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h

Figure ��� Discrepancy of a point set	

upper bound� of this quantity over all halfplanes�

!�S� � sup
h

!S�h��

Since there are an uncountably in
nite number of halfplanes� it is important to derive some
sort of �niteness criterion on the set of halfplanes that might produce the greatest discrepancy	

Lemma� Let h denote the halfplane that generates the maximum discrepancy with respect
to S� and let 	 denote the line that bounds h	 Then either �i� 	 passes through at least
two points of S� or �ii� 	 passes through one point of S� and this point is the midpoint of
the line segment 	 � U 	

Remark� If a line passes through one or more points of S� then should this point be included
in �S�h�� For the purposes of computing the maximum discrepancy� the answer is to
either include or omit the point� whichever will generate the larger discrepancy	 The
justi
cation is that it is possible to perturb h in
nitesimally so that it includes none or
all of these points without alterning ��h�	

Proof� If 	 does not pass through any point of S� then �depending on which is larger ��h�
or �S�h�� we can move the line up or down without changing �S�h� and increasing or
decreasing ��h� to increase their di�erence	 If 	 passes through a point p � S� but is not
the midpoint of the line segment 	 � U � then we can rotate this line about p and hence
increase or decrease ��h� without altering �S�h�� to increase their di�erence	

Since for each point p � S there are only a constant number of lines 	 �at most two� I think�
through this point such that p is the midpoint of 	�U � it follows that there are at most O�n�
lines of type �i� above� and hence the discrepancy of all of these lines can be tested in O�n��
time	

To compute the discrepancies of the other lines� we can dualized the problem	 In the primal
plane� a line 	 that passes through two points pi� pj � S� is mapped in the dual plane to a
point 	� at which the lines p�i and p�j intersect	 This is just a vertex in the arrangement of the
dual lines for S	 So� if we have computed the arrangement� then all we need to do is to visit
each vertex and compute the discrepancy for the corresponding primal line	

It is easy to see that the area 	 � U of each corresponding line in the primal plane can be
computed in O��� time	 So� all that is needed is to compute the number of points of S lying
below each such line	 In the dual plane� the corresponds to determining the number of dual
lines that lie below or above each vertex in the arrangement	 If we know the number of dual
lines that lie strictly above each vertex in the arrangement� then it is trivial to compute the
number of lines that lie below by subtraction	

We de
ne a point to be at level k� Lk� in an arrangement if there are at most k�� lines above
this point and at most n � k lines below this point	 The k�th level of an arrangement is an
x�monotone polygonal curve� as shown below	 For example� the upper envelope of the lines is
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level � of the arrangement� and the lower envelope is level n of the arrangement	 Note that a
vertex of the arrangement can be on multiple levels	 �Also note that our de
nition of level is
exactly one greater than our text�s de
nition	�

L1

L3

L5

Figure ��� Levels in an arrangement	

We claim that it is an easy matter to compute the level of each vertex of the arrangement �e	g	
by plane sweep�	 The initial levels at x � �� are determined by the slope order of the lines	
As the plane sweep proceeds� the index of a line in the sweep line status is its level	 Thus� by
using topological plane sweep� in O�n�� time we can compute the minimumand maximumlevel
number of each vertex in the arrangement	 From the order reversing property� for each vertex
of the dual arrangement� the minimum level number minus � indicates the number of primal
points that lie strictly below the corresponding primal line and the maximum level number is
the number of dual points that lie on or below this line	 Thus� given the level numbers and
the fact that areas can be computed in O��� time� we can compute the discrepancy in O�n��
time and O�n� space� through topological plane sweep	

Lecture ��� Shortest Paths and Visibility Graphs

�Tuesday� Nov ��� �����
Reading� The material on visibility graphs is taken roughly from Chapter ��� but we will present
slightly more e�cient variant of the one that appears in this chapter	

Shortest paths� We are given a set of n disjoint polygonal obstacles in the plane� and two points
s and t that lie outside of the obstacles	 The problem is to determine the shortest path from s
to t that avoids the interiors of the obstacles	 �It may travel along the edges or pass through
the vertices of the obstacles	� The complement of the interior of the obstacles is called free

space	 We want to 
nd the the shortest path that is constrained to lie entirely in free space	

Today we consider a simple �but perhaps not the most e�cient� way to solve this problem	 We
assume that we measure lengths in terms of Euclidean distances	 How do we measure paths
lengths for curved paths� Luckily� we do not have to� because we claim that the shortest path
will always be a polygonal curve	

Claim� The shortest path between any two points that avoids a set of polygonal obstacles is
a polygonal curve� whose vertices are either vertices of the obstacles or the points s and
t	

Proof� We show that any path � that violates these conditions can be replaced by a slightly
shorter path from s to t	 Since the obstacles are polygonal� if the path were not a polygonal
curve� then there must be some point p in the interior of free space� such that the path
passing through p is not locally a line segment	 If we consider any small neighborhood
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about p �small enough to not contain s or t or any part of any obstacle�� then since the
shortest path is not locally straight� we can shorten it slightly by replacing this curved
segment by a straight line segment jointing one end to the other	 Thus� � is not shortest�
a contradiction	

Thus � is a polygonal path	 Suppose that it contained a vertex v that was not an obstacle
vertex	 Again we consider a small neighbor hood about v that contains no part of any
obstacle	 We can shorten the path� as above� implying that � is not a shortest path	

From this it follows that the edges that constitute the shortest path must travel between s and
t and vertices of the obstacles	 Each of these edges must have the property that it does not
intersect the interior of any obstacle� implying that the endpoints must be mutually visible	

De�nition� The visibility graph of s and t and the obstacle set is a graph whose vertices are s
and t the obstacle vertices� and vertices v and w are joined by an edge if the line segment
�v� w� lies entirely in free space	

s

t

Figure ��� Visibility graph	

It follows from the above claim that the shortest path can be computed by 
rst computing
the visibility graph and labeling each edge with its Euclidean length� and then computing the
shortest path by� say� Dijkstra�s algorithm �see CLR�	 Note that the visibility graph is not
planar� and hence may consist of ��n�� edges	 Also note that� even if the input points have
integer coordinates� in order to compute distances we need to compute square roots� and then
sums of square roots	 This can be approximated by �oating point computations	 If you are
a stickler for exactness� this can really be a problem� because there is no known polynomial
time procedure for performing arithmetic with arbitrary square roots of integers	

Computing the Visibility Graph� Next we give an O�n�� procedure for constructing the visi�
bility graph of n line segments in the plane	 The more general task of computing the visibility
graph of an arbitrary set of polygonal obstacles is a very easy generalization	 In this context�
two vertices are visible if the line segment joining them does not intersect any of the obstacle
line segments	 However� we allow each line segment to contribute itself as an edge in the visi�
bility graph	 We will make the general purpose assumption that no three vertices are colinear�
but this is not hard to handle with some care	 The algorithm is not output sensitive	 An
O�n logn� k� algorithm does exist� but it quite complicated	

The text gives an O�n� logn� time algorithm	 We will give an O�n�� time algorithm	 Both
algorithms are based on the same concept� namely that of performing an angular sweep around
each vertex	 The text�s algorithm operates by doing this sweep one vertex at a time	 Our
algorithm does the sweep for all vertices simultaneously	 Using the fact that angular sorting
can be implemented through topologically sweeping the a line arrangement in O�n�� time� we
manage to shave o� the extra O�logn� factor in running time	

Here is a high�level intuitive view of the algorithm	 First� recall the algorithm for computing
trapezoidal maps	 We shoot a bullet up and down from every vertex until it hits its 
rst
line segment	 This implicitly gives us the vertical visibility relationships between vertices
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and segments	 Now� we imagine that angle  continuously sweeps out all slopes from ��
to ��	 Imagine that all the bullet lines attached to all the vertices begin to turn slowly
counterclockwise	 If we play the mind experiment of visualizing the rotation of these bullet
paths� the question is what are the signi
cant event points� and what happens with each
event� As the sweep proceeds� we will eventually determine everything that is visible from
every vertex in every direction	 Thus� it should be an easy matter to piece together the edges
of the visibility graph as we go	

Figure ��� Visibility graph by multiple angular sweep	

Let us consider this �multiple angular sweep in greater detail	 Observe that a signi
cant
event occurs whenever a bullet path jumps from one line segment to another	 This occurs
when  reaches the slope of the line joining two visible vertices v and w	 Unfortunately� it is
somewhat complicated to keep track of which vertices are visible and which are not �although
if we could do so it would lead to a more e�cient algorithm�	 Instead we will take events to
be all angles  between two vertices� whether they are visible or not	 By duality� the slope of
such an event will correspond to the a�value of the intersection of lines v� and w� in the dual
arrangement	 �Convince yourself of this before going on	� Thus� by sweeping the arrangement
we will generate all these events	

Next let�s consider what happens at each event point	 Consider the state of the angular sweep
algorithm for some slope 	 For each vertex v� there are two bullet paths emanating from v
along the line with slope 	 Call one the forward bullet path and the other the backward bullet

path	 Let f�v� and b�v� denote the line segments that these bullet paths hit� respectively	 If
either path does not hit any segment then we store a special null value	 As  varies the following
events can occur	 Assuming �through symbolic perturbation� that each slope is determined by
exactly two lines� whenever we arrive at an events slope  there are exactly two vertices v and
w that are involved	 Here are the possible scenarios�

Same segment� If v and w are endpoints of the same segment� then they are visible� and we
add the edge �v� w� to the visibility graph	

Invisible� Consider the distance from v to w	 First� determine whether w lies on the same
side as f�v� or b�v�	 For the remainder� assume that it is f�v�	 �The case of b�v� is
symmetrical�	
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Figure ��� Possible events	

Compute the contact point of the bullet path shot from v in direction  with segment
f�v�	 If this path hits f�v� strictly before w� then we know that w is not visible to v� and
so this is a �nonevent	

Segment entry� Consider the segment that is incident to w	 Either the sweep is just about
to enter this segment or is just leaving it	 If we are entering the segment� then we set
f�v� to this segment	

Segment exit� If we are just leaving this segment� then then the bullet path will need to
shoot out and 
nd the next segment that it hits	 Normally this would require some
searching	 �In particular� this is one of the reasons that the text�s algorithm has the extra
O�logn� factor#to perform this search	� However� we claim that the answer is available
to us in O��� time	

In particular� since we are sweeping over w at the same time that we are sweeping over
v	 Thus we know that the bullet extension from w hits f�w�	 All we need to do is to set
f�v� � f�w�	

This is a pretty simple algorithm �although there are a number of cases�	 The only information
that we need to keep track of is ��� a priority queue for the events� and ��� the f�v� and b�v�
pointers for each vertex v	 The priority queue is not stored explicitly	 Instead it is available
from the line arrangement of the duals of the line segment vertices	 By performing a topological
sweep of the arrangement� we can process all of these events in O�n�� time	

There is one subtlety about topological sweep that we should be careful about though	 Re�
member that topological sweep and regular plane sweep are not identical� in that a topological
sweep does process events in strictly left to right order	 However� we are assured that along
any dual line� the sweep will process events from left to right along the line	

Here is our fear	 In the Segment Exit event� we accessed f�w�	 But since the sweeps along the
dual lines for v and w are proceeding independently in general� might it be that f�w� is lagging
behind or has moved ahead of the sweep along v� If so� this could be disastrous� because f�w�
would be set for some other angle 	 To see why this is not a danger� we need to look at what
is happening in the arrangement	 At the moment of this event� we are processing a line that
passes through both v and w	 In the dual plane� this line corresponds to the intersection point
of lines v� and w� in the dual plane	 The topological plane sweep sweeps each vertex of the
arrangement exactly once� implying that these events will be processed at the same time in
the topological plane sweep� and so there is no danger of one being ahead or lagging behind
the other	

There are examples of algorithms where the natural events to be processed in topological plane
sweep do not correspond to single vertices� but rather to groups of events in di�erent parts
of the arrangement that are supposed to occur at the same time� but might be out of phase
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because of the topological nature of the sweep	 Does this mean that topological sweep cannot
be used� Sometimes yes and sometimes no	 Recall that the topological sweep arises from a
topological sort of a DAG �the directed edges of the arrangement�	 Sometimes it is possible
to add additional edges �i	e	� additional ordering constraints� thus forcing the sweep to behave
itself	

Lecture �	� Motion Planning

�Tuesday� Dec �� �����
Reading� Chapt �� in BKOS	

Motion planning� Last time we considered the problem of computing the shortest path of a point
in space around a set of obstacles	 Today we will study a very general approach to the more
general problem of how to plan the motion of one or more robots� each with potentially many
degrees of freedom in terms of its movement and perhaps having articulated joints	

Work Space and Con�guration Space� The environment in which the robot operates is called
its work space� which consists of a set of obstacles that the robot is not allowed to intersect	 We
assume that the work space is static� that is� the obstacles do not move	 We also assume that
a complete geometric description of the work space is available to us	 There are interesting
variants of motion planning in environments where the obstacles either unknown or are known
but move	 In unknown environments� the robot must have some way of sensing its environment�
either by sight or touch	 In environments with moving objects� the robot must be capable of
detecting the presense of moving objects early enough that it can avoid colliding with them	
Henceforth� let S denote the set of obstacles de
ning the environment	

For our purposes� a robot will be modeled by two main elements	 The 
rst is a con�guration�
which is a 
nite sequence of values that fully speci
es the position of the robot	 The second
element is the robot�s geometric shape description	 Combined these two element fully de
ne
the robot�s exact position and shape in space	 For example� suppose that the robot is a ��
dimensional polygon that can translate and rotate in the plane	 Its con
guration may be
described by the �x� y� coordinates of some reference point for the robot� and an angle 
that describes its its orientation	 Its geometric information would include its shape �say at
some canonical position�� given� say� as a simple polygon	 Given its geometric description and
a con
guration �x� y� �� this uniquely determines the exact position R�x� y� � of this robot
in the plane	 Thus� the position of the robot can be identi
ed with a point in the robot�s
con�guration space	

R(0,0,0)

R(4,3,45)

Figure ��� Con
gurations of a translating and rotating robot	

A more complex example would be an articulated arm consisting of a set of links� connected
to one another by a set of revolute joints	 The con
guration of such a robot would consist
of a vector of joint angles	 The geometric description would probably consist of a geometric

��



Lecture Notes CMSC �������M

representation of the links	 Given a sequence of joint angles� the exact shape of the robot
could be derived by combining this con
guration information with its geometric description	
For example� a typical ��dimensional industrial robot has six joints� and hence its con
guration
can be thought of as a point in a ��dimensional space	 Why six� Generally� there are three
degrees of freedom needed to specify a location in ��space� and � more degrees of freedom
needed to specify the direction and orientation of the robot�s end manipulator	

Given a point p in the robot�s con
guration space� let R�p� denote the placement of the robot
at this con
guration	 The 
gure below illustrates this in the case of the planar robot de
ned
above	

Work space Configuration space

Figure ��� Work space and con
guration space	

Because of limitations on the robot�s physical structure and the obstacles� not every point in
con
guration space corresponds to a legal placement of the robot	 Any con
guration which is
illegal in that it causes the robot to intersect one of the obstacles is called a forbidden con�gu�

ration	 The set of all forbidden con
gurations is denoted Cforb�R� S�� and all other placements
are called free con�gurations� and the set of these con
gurations is denoted Cfree�R� S�	

Now consider the motion planning problem in robotics	 Given a robot R� an work space S� and
initial con
guration s and 
nal con
guration t �both points in the robot�s free con
guration
space�� determine �if possible� a way to move the robot from one con
guration to the other
without intersecting any of the obstacles	 This reduces to the problem of determining whether
there is a path from s to t that lies entirely within the robot�s free con
guration space	 Thus�
we map the task of computing a robot�s motion to the problem of 
nding a path for a single
point through a collection of obstacles	

Con
guration spaces are typically higher dimensional spaces� and are typically bounded by
curved surfaces �especially when rotational elements are involved�	 Perhaps the simplest case
to visualize is that of translating a convex polygonal robot in the plane amidst a collection
of polygonal obstacles	 In this cased both the work space and con
guration space are two
dimensional	 Consider a reference point placed in the center of the robot	 As shown in the

gure above� the process of mapping to con
guration space involves replacing the robot with
a single point �its reference point� and �growing the obstacles by a compensating amount	
These grown obstacles are called con�guration obstacles or C�obstacles	

This approach while very general� ignores many important practical issues	 It assumes that we
have complete knowledge of the robot�s environment and have perfect knowledge and control
of its placement	 As stated we place no requirements on the nature of the path� but in reality
physical objects can not be brought to move and stop instantaneously	 Nonetheless� this
abstract view is very powerful� since it allows us to abstract the motion planning problem into
a very general framework	
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For the rest of the lecture we will consider a very simple case of a convex polygonal robot that
is translating among a convex set of obstacles	 Even this very simple problem has a number
of interesting algorithmic issues	

Planning the Motion of a Point Robot� As mentioned above� we can reduce complex motion
planning problems to the problem of planning the motion of a point in free con
guration
space	 First we will consider the question of how to plan the motion of a point amidst a set of
polygonal obstacles in the plane� and then we will consider the question of how to construct
con
guration spaces	

To determine whether there is a path from one point to another of free con
guration space� we
will subdivide free space into simple convex regions	 In the plane� we already know how to do
this by computing a trapezoidal map	 We can construct a trapezoidal map for all of the line
segments bounding the obstacles� then throw away any faces that lie in the forbidden space	
We also assume that we have a point location data structure for the trapezoidal map	

Next� we create a planar graph� called a road map� based on the trapezoidal map	 To do this
we create a vertex in the center of each trapezoid and a vertex at the midpoint of each vertical
edge	 We create edges joining each center vertex to the vertices on its �at most four� edges	

t

s

Figure ��� Motion planning using road maps	

Now to answer the motion planning problem� we assume we are given the start point s and
destination point t	 We locate the trapezoids containing these two points� and connect them
to the corresponding center vertices	 We can join them by a straight line segment� because the
cells of the subdivision are convex	 Then we determine whether there is a path in the road
map graph between these two vertices� say by breadth�
rst search	 Note that this will not
necessarily produce the shortest path� but if there is a path from one position to the other� it
will 
nd it	

This description ignores many practical issues that arise in motion planning� but it is the
basis for many practical motion planning problems	 More realistic con
guration spaces will
contain more information �for example� encodings of the current joint rotation velocities�
and will usually re
ne the road map to a much 
ner extent� so that short paths can be
approximated well� as well as handling other elements such as guaranteeing minimal clearances
around obstacles	

Con�guration Obstacles and Minkowski Sums� Now that we know how to 
nd paths in con�

guration space� let us consider how to build con
guration space for a set of polygonal obsta�
cles	 We again consider the simplest case of translating a convex polygonal robot amidst a
collection of convex obstacles	 If the obstacles are not convex� then we may subdivide them
into convex pieces	
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Consider a robot R� whose placement is de
ned by a translation �x� y�� so that R�x� y� denotes
the placement of the robot	 Given an obstacle P � the con
guration obstacle is de
ned as all
the placements of R that intersect P � that is

CP � f�x� y� j R�x� y� � P �� �g�
One way to visualize CP is to imagine �scraping R along the boundary of P and seeing the
region traced out by R�s reference point	

The problem we consider next is� given R and P � compute the con
guration obstacle CP 	 To
do this� we 
rst introduce the notion of a Minkowski sum	 Let us violate our notions of a�ne
geometry for a while� and think of points �x� y� in the plane as vectors	 Given any two sets S�
and S� in the plane� de
ne their Minkowski sum to be the set of all pairwise sums of points
taken from each set�

S� � S� � fp� q j p � S�� q � S�g�
Also� de
ne �S � f�p j p � Sg	 Observe that for the case of a translating robot� we could
de
ne R�x� y� as R��� �� � f�x� y�g	

P+(-R(0,0))

-R(0,0)

P

R(0,0)

CP

P

Figure ��� Con
guration obstacles and Minkowski sums	

Claim� Given a planar translating robot R and an obstacle P � then the C�obstacle of P is
P � ��R��� ���	

Proof� We show that R�x� y� intersects P if and only if �x� y� � P � ��R��� ���	 First� if
R�x� y� intersects P � then there must be a point q � �qx� qy� such that q � P � R�x� y�	
This implies that �qx � x� qy � y� � R��� ��� and hence �x� qx� y � qy� � �R��� ��	 Since
q � P � by adding �qx� qy� to this we have �x� y� � P � ��R��� ���	

Conversely� if �x� y� � P � ��R��� ���� then there must be points �px� py� � P and
�rx� ry� � R��� �� such that �px � rx� py � ry� � �x� y�	 Thus we have �px� py� � �rx �
x� ry � y�� which implies that P intersects R�x� y�	

Since it is an easy matter to compute �R��� �� in linear time �by simply negating all of its
vertices� the problem of computing the C�obstacle CP reduces to the problem of computing a
Minkowski sum of two convex polygons	 We claim that this can be done in O�m � n� time�
where m is the number of vertices in R and n is the number of vertices in P 	 The algorithm
is based on the following observation	 Given a vector �d� We say that a point p is extreme in
direction �d if it maximizes the dot product p � �d	
Observation� Given two polygons P and R� then the set of extreme points of P � R in

direction �d is the set of sums of points p and r that are extreme in direction �d for P and
R� respectively	
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The book leaves the proof as an exercise	 It follows easily by the linearity of the dot product	

From this observation� it follows that there is a simple rotating calipers algorithmfor computing
P � R� when both are convex polygons	 In particular� we perform an angular sweep by
considering a unit vector �d rotating counterclockwise around a circle	 As �d rotates� it is an
easy matter to keep track of the vertex or edge of P and R that is extreme in this direction	
Whenever �d is perpendicular to an edge of either P or R� we add this edge to the vertex of
the other polygon	 The algorithm is given in the text� and is illustrated in the 
gure below	

P

R

r

e

e+r

P+R

d

d

d

Figure ��� Computing Minkowski sums	

Assuming P and R are convex� observe that each edge of P and each edge of R contributes
exactly one edge to P � R	 �If two edges are parallel and on the same side of the polygons�
then these edges will be combined into one edge� which is as long as their sum	� Thus we have
the following	

Claim� Given two convex polygons� P andR� with n andm edges respectively� their Minkowski
sum P �R can be computed in O�n� m� time� and consist of at most n� m edges	

Lecture �
� More Motion Planning

�Thursday� Dec �� �����
Reading� Chapt �� in BKOS	

Motion planning� Recall that the motion planning problem is that of determining whether there is
a path from one placement �or con
guration� of a robot to another� subject to the constraint
that the robot does not intersect any of a set of polygonal obstacles	 We showed that this
problem could be solved by transforming the obstacles into con�guration space� where each
point in this space corresponds to a particular con
guration or position of the robot	 Then the
problem reduces to determining whether it is possible to get from the starting con
guration
point to the ending con
guration point	 The transformed obstacles are called con�guration

obstacles or C�obstacles	

We also showed that in the special case where the robot R can be translated but not rotated
�i	e	� the con
guration space is two�dimensional� then� given a work�space obstacle P � the
corresponding con
guration obstacle CP is the Minkowski sum P���R��� ���	 We also showed
that if P and R are convex� then it is possible to compute this Minkowski sum by a rotating
calipers algorithm in O�n � m� time� where n and m are the number of sides in P and R�
respectively	

Complexity of Minkowski Sums� Today we continue to consider the case of translation only
�because it is the simplest nontrivial case�� and consider the questions of how we can compute

��
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a complete description of the con
guration space� and what the combinatorial complexity of
this description might be	

To begin with� let�s see just how bad things might be	 Suppose you are given a robot R with
m sides and a set of work�space obstacle P with n sides	 How many sides might the Minkowski
sum P �R have in the worst case� O�n�m�� O�nm�� even more� The complexity generally
depends on what special properties if any P and R have	

Nonconvex Robot and Nonconvex Obstacles� Suppose that both R and P are nonconvex sim�
ple polygons	 Let m be the number of sides of R and n be the number of sides of P 	 How
many sides might there be in the Minkowski sum P � R in the worst case� We can derive a
quick upper bound as follows	 First observe that if we triangulate P � we can break it into the
union of at most n� � triangles	 That is�

P � �n��i�� Ti�

R � �m��j�� Sj �

It follows that
P � R � �n��i�� �m��j�� �Ti � Sj��

Thus� the Minkowski sum is the union of O�nm� polygons� each of constant complexity	 Thus�
there are O�nm� sides in all of these polygons	 The arrangement of all of these line segments
can have at most O�n�m�� intersection points �if each side intersects with each other�� and
hence this is an upper bound on the number of vertices in the 
nal result	

Could things really be this bad� Yes they could	 Consider the two polygons in the 
gure below
left	 There are O�n�m�� ways that these two polygons can be �docked� as shown on the right	
The Minkowski sum P ��R is shown in the text	 Notice that the large size is caused by the
number of holes	 �It might be argued that this is not fair� since we are not really interested
in the entire Minkowski sum� just a single face of the Minkowski sum	 Proving bounds on the
complexity of a single face is an interesting problem� and the analysis is quite complex	�

P

R

Figure ��� Minkowski sum of O�n�m�� complexity	

As a 
nal observation� notice that the upper bound holds even if P �and R for that matter� is
not a single simple polygon� but any union of n triangles	

Convex Robot and Nonconvex Obstacles� We have seen that the worst�case complexity of the
Minkowski sum might range from O�n�m� to as high as O�n�m��� which is quite a gap	 Let
us consider an intermediate but realistic situation	 Suppose that we assume that P is an
arbitrary n�sided simple polygon� and R is a convex m�sided polygon	 Typically m is much

��
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smaller than n	 What is the combinatorial complexity of P � R in the worst case� As before
we can observe that P can be decomposed into the union of n� � triangles Ti� implying that

P �R � �n��i�� �Ti �R��

Each Minkowski sum in the union is of complexity m� �	 So the question is how many sides
might there be in the union of O�n� convex polygons each with O�m� sides� We could derive
a bound on this quantity� but it will give a rather poor bound on the worst�case complexity	
To see why� consider the limiting case of m � �	 We have the union of n convex objects�
each of complexity O���	 This could have complexity as high as ��n��� as seen by generating
a criss�crossing pattern of very skinny triangles	 But� if you try to construct such a counter
example� you won�t be able to do it	

To see why such a counterexample is impossible� suppose that you start with nonintersecting
triangles� and then take the Minkowski sum with some convex polygon	 The claim is that it is
impossible to generate this sort of criss�cross arrangement	 So how complex an arrangement
can you construct� We will show the following	

Theorem� Let R be a convex m�gon and P and simple n�gon� then the Minkowski sum P �R
has total complexity O�nm�	

Is O�nm� an attainable bound� The idea is to go back to our analogy of �scraping R around
the boundary of P 	 Can we arrange P such that most of the edges of R scrape over most of
the n vertices of P � Suppose that R is a regular convex polygon with m sides� and that P has
the comb structure shown in the 
gure below� where the teeth of the comb are separated by
a distance at least as large as the diameter of R	 In this case R will have many sides scrape
across each of the pointy ends of the teeth� implying that the 
nal Minkowski sum will have
total complexity ��nm�	

P

R

P+R

Figure ��� Minkowski sum of O�nm� complexity	

The Union of Pseudodisks� To show that O�nm� is an upper bound� we need some way of ex�
tracting the special geometric structure of the union of Minkowski sums	 Recall that we are
computing the union of Ti � R� where the Ti�s have disjoint interiors	 The con
guration that
we want to avoid is the criss�cross pattern shown above	 How do we prove that such a pattern
cannot be created� The key is in the way the Minkowski sums of disjoint objects can intersect	

We call a pair of convex objects o� and o� are a pair of pseudodisks if the both of the di�erences
o�no� and o�no� are connected	 In particular� if the objects intersect� then they do not cross
through one another	

Note that the being a pseudodisk is not a property of a single object� but is the property of
pairs of objects	 A collection of objects is said to be a collection of pseudodisks if each pair is
a pair of pseudodisks	 The theorem above will follow from the next two lemmas

��
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Pseudodisks Not pseudodisks

Figure ��� Pseudodisks	

Lemma 
� Given a set convex objects T�� T�� � � � � Tn with disjoint interiors� and convex R�
the set

fTi �R j � � i � ng
is a collection of pseudodisks	

Lemma �� Given a collection of pseudodisks� with a total of n vertices� the complexity of
their union is O�n�	 �In our case� the total number of vertices is O�nm�	�

First we prove Lemma �	 Consider two polygons T� and T� with disjoint interiors	 We want
to show that T� � R and T� � R do not cross over one another	 There is a very easy way to
�visualize why this is true� but it is not a rigorous proof	 Recall that the Minkowski sum
T � R is related to scraping the negation �R around the boundary of T 	 Suppose we scrape
�R around the union of T� and T�	 If the interiors of these two polygons do not intersect� then
either these two scrapings do not intersect each other at all� or else they intersect in exactly
two points	 But� from convexity� it is �plausible that there should not be more than two
intersections	

Here is a careful proof	 Recall from yesterday�s lecture that given any directional unit vector �d�
the most extreme point of R in direction �d is the point r � R that maximizes the dot product
��d � r�	 �Recall that we treat the �points of the polygons as if they were vectors	� The point
of T� � R that is most extreme in direction d is the sum of the points t and r that are most
extreme for T� and R� respectively	

Given two convex polygons T� and T� with disjoint interiors� they de
ne two outer tangents�
as shown in the 
gure below	 Let �d� and �d� be the outward pointing perpendicular vectors for
these tangents	 Because these polygons do not intersect� it follows easily that as the directional
vector rotates from �d� to �d�� T� will be the more extreme polygon� and from �d� to �d� T� will
be the more extreme	 See the 
gure below	

Now� if to the contrary T� � R and T� � R had a crossing intersection� then observe that we
can 
nd points p� p�� p�� and p�� in cyclic order around the boundary of the convex hull of
�T� �R�� �T� �R� such that p�� p� � T� �R and p�� p� � T� �R	 First consider p�	 Because

it is on the convex hull� consider the direction �d� perpendicular to the supporting line here	
Let r� t�� and t� be the extreme points of R� T� and T� in direction �d� respectively	 From our
basic fact about Minkowski sums we have

p� � r � t� p� � r � t��

Since p� is on the convex hull� it follows that t� is more extreme than t� in direction �d�� that
is� T� is more extreme than T� in direction �d�	 By applying this same argument� we 
nd that
T� is more extreme than T� in directions �d� and �d�� but that T� is more extreme than T� in
directions �d� and �d�	 But this is impossible� since from the observation above� there can be
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d2

T2

T1

d1

d2

d1
T2

T1 extreme

extreme

Figure ��� Alternation of extremes	

T1ext

T1+R

T2+R

d4

d1

d2

d3

d1

d2
d3

d4 T1 extreme

T2 extreme

T2 extreme

Figure ��� Proof of Lemma �	
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at most one alternation in extreme points for nonintersecting convex polygons	 See the 
gure
below	

Next we prove Lemma �	 This is a rather cute combinatorial lemma	 We are given some
collection of pseudodisks� and told that altogether they have n vertices	 We claim that their
entire union has complexity O�n�	 �Recall that in general the union of n convex polygons can
have complexity O�n��� by criss�crossing	� The proof is based on a clever charging scheme	
Each vertex in the union will be charged to a vertex among the original psuedodisks� such that
no vertex is charged more than twice	 This will imply that the total complexity is at most �n	

There are two types of vertices that may appear on the boundary	 The 
rst are vertices from
the original polygons that appear on the union	 There can be at most n such vertices� and
each is charged to itself	 The more troublesome vertices are those that arise when two edges of
two pseudodisks intersect each other	 Suppose that two edges e� and e� of pseudodisks P� and
P� intersect along the union	 Follow edge e� into the interior of the pseudodisk e�	 Two things
might happen	 First� we might hit the endpoint v of this e� before leaving the interior P�	 In
this case� charge the intersection to v	 Note that v can get at most two such charges� one from
either incident edge	 If e� passes all the way through P� before coming to the endpoint� then
try to do the same with edge e�	 Again� if it hits its endpoint before coming out of P�� then
charge to this endpoint	 See the 
gure below	

v

e2 e1

v u

e2 e1

v u

e2 e1

Charge v Charge u Cannot happen

Figure ��� Proof of Lemma �	

But what do we do if both e� shoots straight through P� and e� shoots straight through P��
Now we have no vertex to charge	 This is okay� because the pseudodisk property implies that
this cannot happen	 If both edges shoot completely through� then the two polygons must cross
over each other	

Lecture ��� Final Review

�Tuesday� Dec �� �����
Announcements� Class is cancelled this Thursday	 O�ce hours on Wednesday will be moved up
to ����$����pm	 I�ll be holding usual o�ce hours on Monday� from ����$����pm on the day before
the 
nal	
Final Exam� Tues� Dec ��� ����$�����am	 The exam will be closed�book� closed�notes� but you
are allowed two cheat�sheets �front and back�	

Before the Midterm� Convex hulls� line segment intersection� planar graphs and DCEL�s� poly�
gon triangulation� intersection of halfspaces� linear programming in low dimensions� orthogonal
range searching� planar point location� trapezoidal maps	 You should be aware of the results�
de
nitions and general techniques� but I will not ask you for detailed information �e	g	 simu�
lating Kirkpatrick�s algorithm on a data set�	
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Voronoi diagrams� Recall the de
nition of Voronoi diagrams	 We presented Fortune�s algorithm�
which operated by sweeping a �distorted sweep�line	 Voronoi diagrams have many applica�
tions in problems dealing with distances	 More generally� Voronoi diagrams are an example
of the notion of subdividing the plane into regions according to some criterion	 In this case�
we subdivide the plane into regions according to who the nearest neighbor is	 It is possible to
de
ne other sorts of diagrams	 For example� the 	nd�order Voronoi diagram is a subdivision
of the plane according to who your 
rst two nearest neighbors are �and the kth�order diagram
is de
ned similarly for the k nearest neighbors�	 Also� the furthest point Voronoi diagram is
de
ned according to which point is the furthest from this point	 Voronoi diagrams can be
computed for line segments as well� and are often used in motion planning applications	

Delaunay Triangulations� This is the dual of the Voronoi diagram	 We discussed properties� such
as the fact that the Delaunay triangulation maximized the minimum angle	 We presented a
randomized incremental algorithm for the Delaunay triangulation	 Generally� triangulations
play an important role in computational geometry since they allow us to reduce complex
domains to a collection of simpler domains �triangles�	 DeFloriani described how any algorithm
for incrementally updating a triangulation could be used for generating a hierarchical surface
representation �similar to Kirkpatrick�s algorithm�	 You are not responsible for the details of
her presentation� but for understanding how update rules for triangulations can be used to
generate hierarchical surface representations	

Line Arrangements� We showed that line arrangements together with duality could be used for
answering many problems having to do with lines and points in the plane	 We presented a
simple incremental construction algorithm for arrangements in the plane� proved its O�n��
running time with the zone theorem	 We discussed topological plane sweep as a method for
traversing an planar arrangement	 Duality and arrangements can also be generalized to higher
dimensions	

We presented a number of applications of arrangements	 These included sorting angular se�
quences� computing the narrowest ��corridor� computing the maximum discrepancy �and dis�
cussed the notion of a level in an arrangement�	 On Homework �� Problem � we also saw
that there are problems that can be solved by using the arrangement to �conceptualize a
solution� even though the actual solution may not involve constructing the arrangement	 You
should probably expect at least one problem on the exam whose solution will require use of
arrangements	

Shortest Paths and Visibility Graphs� We discussed the problem of computing shortest paths
in the plane� and how visibility graphs could be used to reduce the shortest path problem to
a problem on graphs	 Notice that using visibility graphs does not extend to three dimensional
shortest path problems �since a shortest path may bend anywhere along the interior of an edge�	
Nonetheless� because graph problems are often much easier to solve� the technique of extracting
a graph from a geometric setting� is an important concept	 We saw in Homework �� Problem
� that some special shortest path problems can be solved without explicitly constructing a
visibility graph at all	 For example� shortest paths in simple polygons can be solved in O�n�
time� once the polygon has been triangulated	 �The solution is somewhat more complicated�
but still similar to the homework solution	�

Motion Planning� We introduced con
guration spaces� and discussed the idea of mapping work�
space obstacles into obstacles in con
guration space	 We discussed Minkowski sums as a
method for computing con
guration obstacles where translation is involved	 We showed how
to compute the Minkowski sum of two convex polygons in linear time	 We also discussed
the combinatorial complexity of the union of a geometric objects� when these objects satis
ed
special conditions	 Although the general complexity could be as high as O�n��� we showed
that if the objects are convex pseudodisks� then the complexity only has complexity O�n�	

��



Lecture Notes CMSC �������M

Lecture X�� Randomized Trapezoidal Decomposition

�Supplemental�

Randomized Incremental Algorithms� We consider the following problem	 Given a set of �pos�
sibly intersecting� line segments in the plane� subdivide the plane into a collection of trapezoids�
formed by shooting a bullet to the left and right of each vertex and each intersection point
until it hits the 
rst object	 �Following Mulmuley�s presentatio

The running time of this algorithm will be O�k�n logn�� with high probability� where n is the
number of segments and k is the number of intersection points between the segments	 More
succinctly� the running time is %O�k � n logn�	 Mulmuley uses the notation f�n� � %O�g�n��
if� for all su�ciently large n� f�n� � cg�n� for some constant c� with probability � � ��p�n��
where p�n� is a polynomial whose degree increases with c	 Thus� we can reduce the probability
that the running time fails to be O�g�n�� as low as we like� up to the reciprocal of high degree
polynomial function of n	� Observe that this running time is asymptotically better than the
previous� in the sense that we have removed the logn multiplicative factor from in front of the
k	 The price we have paid� is that the running time is now randomized� and so not guaranteed	

Randomized Incremental Algorithm� The basic idea of the algorithm is described below	

��� Randomly permute the set of segments	 Let N i denote the 
rst i segments	 In general�
H�N i� will denote the trapezoidal decomposition of the 
rst i segments	

��� Initialize the structure to a trivial �empty trapezoidal decomposition �e	g	 a large empty
enclosing box�� H�N��	

��� One by one add the segments in random order	 For each segment� do the following	

�a� Locate the trapezoid of H�ni��� containing the left endpoint of the segment	 �There
are a couple of ways to do this	 More on this later	�

�b� Trace the segment from one trapezoid to the next	 At the endpoints of the segment�
split the current trapezoid by adding a vertical wall	 For each trapezoid determine
the point of entry and point of exit of the segment	 If the segment crosses the top
or bottom then create new intersection points� and split the trapezoid by adding a
vertical wall	

�c� After tracing the segment� determine the vertical walls of H�N i��� that were stabbed
by the segment	 For each such wall� trim it back to the portion containing its sup�
porting vertex	 This results in the merger of two adjacent trapezoids	

The implementation of the algorithm relies on the ability to perform the necessary local ma�
nipulations of the planar graph representing the trapezoidal decomposition	 In particular� we
assume that we can ��� trace a segment through a face of the decomposition� ��� split a face
�by the addition of a vertical wall� and ��� merge two adjacent faces �when a vertical wall is
trimmed� in time proportional to the complexity of the face� that is� the number of vertices
�equivalently edges� on the face	 We let f denote a trapezoidal face of the decomposition�
and let c�f� denote the complexity of this face	 Observe that the running time of the above
algorithm is O�c�f�� for each face that is traced by this procedure� because there can only be
a constant number �at most �� split performed for each trapezoid� and a constant number �at
most �� merges for each trapezoid	

The other question we left open was how to locate the left�endpoint from which to start the
tracing	 We do this using a simple bucketing strategy	 For each of the n left�endpoints� we
store which trapezoid of the current subdivision contains this point� and with each trapezoid f
we associate a list L�f�� which contains the segments whose left�endpoint lies within this face	
When we wish to trace a segment� we can determine the trapezoid containing this segment
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Trim and merge.

Trace and split.

Initial decomposition.

Figure ��� Randomized incremental trapezoidal decomposition	
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in constant time	 When a segment intersects a trapezoid f � it may split a trapezoid f into
a constant number of new trapezoids	 We can walk through the list L�f� and determine
which of the new trapezoids contains a given point in constant time each	 We form new left�
endpoint lists for each of the new faces� L�f��� L�f��� etc	 When we merge two trapezoids�
we simply concatenate their lists	 Observe that both of these operations can be performed in
time O�l�f��� where l�f� � jL�f�j	

f
f 1

f

f

2

3

c(f) = 9 l(f) = 5 c(f1) = 7   l(f1) = 2

c(f2) = 5   l(f2) = 2

c(f3) = 4   l(f3) = 1

Figure ��� Splitting a face	

Lemma� Consider the insertion of segment intoH�N i��� which intersects faces F � ff�� f�� � � � � fkg
in the decomposition	 The time to insert this segment is

O

�
�X
f�F

�c�f� � l�f��

�
A �

Analysis� Analyzing the expected case running time of this algorithm is quite a tricky task	 We
want to show that� no matter what n segments are given initially� if we randomize of all possible
insertion orders� the total expected time to build the decomposition is O�k�n logn�	 �We will
only prove that this is an expected bound	 The proof that this holds with high probability
takes some additional work	� In particular� we seem to need to be able to determine the
expected value of

P
f �c�f� � l�f�� over all segments that might be inserted next	

This task would be quite daunting� if it were not for a very clever analysis trick� called backward

analysis	 Here is the idea� we imagine that we are running time algorithm backwards� deleting
segments one at a time	 �Whether we count backwards or forwards makes no di�erence	 The
running time of a given stage is still given by the lemma above	� Observe that if all insertion
orders are equally likely� then the last segment to be deleted in the reversed algorithm is equally
likely to be any one of the segments that already exists in the decomposition H�N i�	 Since
every segment of N i is equally likely to be deleted� to determine the expected time for the i�th
stage� it su�ces to average over all possible segments i to be deleted� and for each determine
the complexity if this were the segment chosen	

When we delete some segment from the H�N i�� observe that the only trapezoids that would be
a�ected from its deletion consist of the trapezoids of H�N i� that are adjacent to this segment	
An example is shown in the 
gure below	

Lemma� For each j� � � j � i� let Fj denote the faces that the j�th segment intersects in
H�N i�	 The expected time for the last stage in the construction of H�N i� is on the order

���
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Final decomposition.

Regions affected by deletion.

Figure ��� A�ected trapezoids	

of

E�i� �
�

i

iX
j��

X
f�Fj

�c�f� � l�f���

We seem to be no closer to our goal� since there does not appear to be an easy way to analyze the
sums of complexities of all the trapezoids that a given segment intersects	 However� the crucial
trick is not to count segment by segment� but to count trapezoid by trapezoid	 Assuming that
the segments are in general position� observe the following important fact	

Lemma� �Bounded degree property� Each trapezoid in a trapezoidal decomposition is adja�
cent to at most � segments	 �Namely the segments immediately above and below� and
the segments which touch the left and right walls of the trapezoid �either because of an
endpoint or an intersection point�	

Thus if we take the complexity of each trapezoid� and multiply by �� we will have an upper
bound on the sum of complexities of all the trapezoids that are intersected by all segments	

E�i� � �

i

X
f�H	Ni 


��c�f� � l�f��

� �

i

�
� X
f�H	Ni 


c�f� �
X

f�H	Ni


l�f�

�
A �

Now� this is something we can analyze	 We know the value of
P

f c�f� is the sum of all the
edges summed over all the faces in the decomposition	 However� this counts every edge in
the decomposition twice	 Since the decomposition is a planar graph� this is proportional to
the number of vertices in the decomposition currently	 The value of

P
f l�f� is just equal to

n � i� since it includes all the left endpoints of segments that have yet to be added	 If we
let ki denote the number of intersection points at the current stage of the decomposition� the
number of vertices in H�N i� is just �i � ki� so the above formula simpli
es to

E�i� � �

i
��i� ki � n� i�
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� c�n� ki�

i
�

for some constant c	 The interesting thing at this point is that� although our analysis was
conditional on the structure of H�N i�� the resulting bound is almost entirely independent of
this structure	 �Only the value ki is dependent	�

At this point we can see where the analysis is going	 If we ignore the ki term in the above� we
see that E�i� � cn�i	 To get the total time� we sum these up� getting at total expected time
of

TE�n� �
nX
i��

E�i�

�
nX
i��

cn

i

� cn

nX
i��

�

i


 cn lnn � O�n logn��

The last line uses the well known fact that the Harmonic series�
P

��i�n ��i tends to lnn	

We need to get a handle on what ki is expected to be	 Obviously the value of ki should
eventually approach k� the total number of intersections as i approaches n	 The interesting
fact is that this quantity approaches k quadratically� not linearly	

Lemma� For 
xed i 	 �� the expected value of ki� assuming that N i is a random sample of
N of size i� is O�ki��n��	

Proof� For each intersection point v between two segments� s� and s�� let Iv denote the
random variable that this � if this intersection is part of the decomposition H�N i� and
� otherwise	 Observe that the expected value of ki is

P
v Iv	 However� v occurs within

Iv if and only if both s� and s� occur within the 
rst i randomly selected segments	 The
probability that each one has been selected alone is i�n	 The probability that both have
been selected is roughly i��n� �for i and n large�	 Thus the expected value of ki is k times
this quantity� or O�ki��n��	

To complete the analysis� we make use of another basic fact from summations	
P

��i�n i 

n���	

TE�n� �
nX
i��

E�i�

�
nX
i��

c�n� ki�

i

�
nX
i��

cn

i
�

nX
i��

cki
i

� cn
nX
i��

�

i
� c

nX
i��

ki�

n�i


 cn lnn�
ck

n�

nX
i��

i


 cn lnn� ck��

� O�n logn� k��
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Lecture X�� Voronoi Diagrams

�Supplemental�
Read� O�Rourke� Chapt �� Mulmuley� Sect	 �	�	�	

Planar Voronoi Diagrams� Recall that� given n points P � fp�� p�� � � � � png in the plane� the
Voronoi polygon of a point pi� V �pi�� is de
ned to be the set of all points q in the plane for
which pi is among the closest points to q in P 	 That is�

V �pi� � fq � jpi � qj � jpj � qj� �j �� ig�

The union of the boundaries of the Voronoi polygons is called the Voronoi diagram of P �
denoted V D�P �	 The dual of the Voronoi diagram is a triangulation of the point set� called
the Delaunay triangulation	 Recall from our discussion of quad�edge data structure� that given
a good representation of any planar graph� the dual is easy to construct	 Hence� it su�ces
to show how to compute either one of these structures� from which the other can be derived
easily in O�n� time	

There are four fairly well�known algorithms for computing Voronoi diagrams and Delaunay
triangulations in the plane	 They are

Divide�and�Conquer� �For both VD and DT	� The 
rst O�n logn� algorithm for this prob�
lem	 Not widely used because it is somewhat hard to implement	 Can be generalized to
higher dimensions with some di�culty	 Can be generalized to computing Vornoi diagrams
of line segments with some di�culty	

Randomized Incremental� �For DT and VD	� The simplest	 O�n logn� time with high
probability	 Can be generalized to higher dimensions as with the randomized algorithm
for convex hulls	 Can be generalized to computing Voronoi diagrams of line segments
fairly easily	

Fortune�s Plane Sweep� �For VD	� A very clever and fairly simple algorithm	 It computes
a �deformed Voronoi diagram by plane sweep in O�n logn� time� from which the true
diagram can be extracted easily	 Can be generalized to computing Voronoi diagrams of
line segments fairly easily	

Reduction to convex hulls� �For DT	� Computing a Delaunay triangulation of n points in
dimension d can be reduced to computing a convex hull of n points in dimension d� �	
Use your favorite convex hull algorithm	 Unclear how to generalize to compute Voronoi
diagrams of line segments	

We will cover all of these approaches� except Fortune�s algorithm	 O�Rourke does not give
detailed explanations of any of these algorithms� but he does discuss the idea behind For�
tune�s algorithm	 Today we will discuss the divide�and�conquer algorithm	 This algorithm is
presented in Mulmuley� Section �	�	�	

Divide�and�conquer algorithm� The divide�and�conquer approach works like most standard ge�
ometric divide�and�conquer algorithms	 We split the points according to x�coordinates into �
roughly equal sized groups �e	g	 by presorting the points by x�coordinate and selecting medi�
ans�	 We compute the Voronoi diagram of the left side� and the Voronoi diagram of the right
side	 Note that since each diagram alone covers the entire plane� these two diagrams overlap	
We then merge the resulting diagrams into a single diagram	

The merging step is where all the work is done	 Observe that every point in the the plane
lies within two Voronoi polygons� one in V D�L� and one in V D�R�	 We need to resolve this
overlap� by separating overlapping polygons	 Let V �l�� be the Voronoi polygon for a point
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from the left side� and let V �r�� be the Voronoi polygon for a point on the right side� and
suppose these polygons overlap one another	 Observe that if we insert the bisector between
l� and r�� and through away the portions of the polygons that lie on the �wrong side of the
bisector� we resolve the overlap	 If we do this for every pair of overlapping Voronoi polygons�
we get the 
nal Voronoi diagram	 This is illustrated in the 
gure below	

Left/Right Diagrams and Contour

Final Voronoi Diagram

Figure ��� Merging Voronoi diagrams	

The union of these bisectors that separate the left Voronoi diagram from the right Voronoi
diagram is called the contour	 A point is on the contour if and only if it is equidistant from �
points in S� one in L and one in R	

��� Presort the points by x�coordinate �this is done once�	

��� Split the point set S by a vertical line into two subsets L and R of roughly equal size	

��� Compute V D�L� and V D�R� recursively	 �These diagrams overlap one another	�

��� Merge the two diagrams into a single diagram� by computing the contour and discarding
the portion of the V D�L� that is to the right of the contour� and the portion of V D�R�
that is to the left of the contour	

Assuming we can implement step ��� in O�n� time �where n is the size of the remaining point
set� then the running time will be de
ned by the familiar recurrence

T �n� � �T �n��� � n�

which we know solves to O�n logn�	
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Computing the contour� What makes the divide�and�conquer algorithm somewhat tricky is the
task of computing the contour	 Before giving an algorithm to compute the contour� let us
make some observations about its geomtetric structure	 Let us make the usual simplifying
assumptions that no � points are cocircular	

Lemma� The contour consists of a single polygonal curve �whose 
rst and last edges are
semiin
nite� which is monotone with respect to the y�axis	

Proof� A detailed proof is a real hassle	 Here are the main ideas� though	 The contour
separates the plane into two regions� those points whose nearest neighbor lies in L from
those points whose nearest neighbor lies in R	 Because the contour locally consists of
points that are equidistant from � points� it is formed from pieces that are perpendicular
bisectors� with one point from L and the other point from R	 Thus� it is a piecewise
polygonal curve	 Because no � points are cocircular� it follows that all vertices in the
Voronoi diagram can have degree at most �	 However� because the contour separates the
plane into only � types of regions� it can contain only vertices of degree �	 Thus it can
consist only of the disjoint union of closed curves �actually this never happens� as we
will see� and unbounded curves	 Observe that if we orient the contour counterclockwise
with respect to each point in R �clockwise with respect to each point in L�� then each
segment must be directed in the �y directions� because L and R are separated by a
vertical line	 Thus� the contour contains no horizontal cusps	 This implies that the
contour cannot contain any closed curves� and hence contains only vertically monotone
unbounded curves	 Also� this orientability also implies that there is only one such curve	

Lemma� The topmost �bottommost� edge of the contour is the perpendicular bisector for the
two points forming the upper �lower� tangent of the left hull and the right hull	

Proof� This follows from the fact that the vertices of the hull correspond to unbounded
Voronoi polygons� and hence upper and lower tangents correspond to unbounded edges
of the contour	

These last two theorem suggest the general approach	 We start by computing the upper
tangent� which we know can be done in linear time �once we know the left and right hulls� or
by prune and search�	 Then� we start tracing the contour from top to bottom	 When we are
in Voronoi polygons V �l�� and V �r�� we trace the bisector between l� and r� in the negative
y�direction until its 
rst contact with the boundaries of one of these polygons	 Suppose that
we hit the boundary of V �l�� 
rst	 Assuming that we use a good data structure for the Voronoi
diagram �e	g	 quad�edge data structure� we can determine the point l� lying on the other side
of this edge in the left Voronoi diagram	 We continue following the contour by tracing the
bisector of l� and r�	

However� in order to insure e�ciency� we must be careful in how we determine where the
bisector hits the edge of the polygon	 Consider the 
gure shown below	 We start tracing the
contour between l� and r�	 By walking along the boundary of V �l�� we can determine the edge
that the contour would hit 
rst	 This can be done in time proportional to the number of edges
in V �l�� �which can be as large as O�n��	 However� we discover that before the contour hits the
boundary of V �l�� it hits the boundary of V �r��	 We 
nd the new point r� and now trace the
bisector between l� and r�	 Again we can compute the intersection with the boundary of V �l��
in time proportional to its size	 However the contour hits the boundary of V �r�� 
rst� and so
we go on to r�	 As can be seen� if we are not smart� we can rescan the boundary of V �l�� over
and over again� until the contour 
nally hits the boundary	 If we do this O�n� times� and the
boundary of V �l�� is O�n�� then we are stuck with O�n�� time to trace the contour	

We have to avoid this repeated rescanning	 However� there is a way to scan the boundary of
each Voronoi polygon at most once	 Observe that as we walk along the contour� each time we
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Figure ��� Tracing the contour	

stay in the same polygon V �l��� we are adding another edge onto its Voronoi polygon	 Because
the Voronoi polygon is convex� we know that the edges we are creating turn consistently in
the same direction �clockwise for points on the left� and counterclockwise for points on the
right�	 To test for intersections between the contour and the current Voronoi polygon� we trace
the boundary of the polygon clockwise for polygons on the left side� and counterclockwise for
polygons on the right side	 Whenever the contour changes direction� we continue the scan
from the point that we left o�	 In this way� we know that we will never need to rescan the
same edge of any Voronoi polygon more than once	

Lecture X�� Delaunay Triangulations and Convex Hulls

�Supplemental�
Read� O�Rourke �	� and �	�	

Delaunay Triangulations and Convex Hulls� At 
rst� Delaunay triangulations and convex hulls
appear to be quite di�erent structures� one is based on metric properties �distances� and the
other on a�ne properties �collinearity� coplanarity�	 Today we show that it is possible to con�
vert the problem of computing a Delaunay triangulation in dimension d to that of computing
a convex hull in dimension d� �	 Thus� there is a remarkable relationship between these two
structures	

We will demonstrate the connection in dimension � �by computing a convex hull in dimension
��	 Some of this may be hard to visualize� but see O�Rourke for illustrations	 �You can also
reason by analogy in one lower dimension of Delaunay triangulations in ��d and convex hulls
in ��d� but the real complexities of the structures are not really apparent in this case	�

The connection between the two structures is the paraboloid z � x� � y�	 Observe that this
equation de
nes a surface whose vertical cross sections �constant x or constant y� are parabolas�
and whose horizontal cross sections �constant z� are circles	 For each point in the plane� �x� y��
the vertical projection of this point onto this paraboloid is �x� y� x��y�� in ��space	 Given a set
of points S in the plane� let S� denote the projection of every point in S onto this paraboloid	
Consider the lower convex hull of S�	 This is the portion of the convex hull of S� which is
visible to a viewer standing at z � ��	 We claim that if we take the lower convex hull of S��
and project it back onto the plane� then we get the Delaunay triangulation of S	 In particular�
let p� q� r � S� and let p�� q�� r� denote the projections of these points onto the paraboloid	
Then p�q�r� de
ne a face of the lower convex hull of S� if and only if �pqr is a triangle of the
Delaunay triangulation of S	 The process is illustrated in the following 
gure	
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Project onto paraboloid. Compute convex hull. Project hull faces back to plane.

Figure ��� Delaunay triangulations and convex hull	

The question is� why does this work� To see why� we need to establish the connection between
the triangles of the Delaunay triangulation and the faces of the convex hull of transformed
points	 In particular� recall that

Delaunay condition� Three points p� q� r � S form a Delaunay triangle if and only if the
circumcircle of these points contains no other point of S	

Convex hull condition� Three points p�� q�� r� � S� form a face of the convex hull of S� if
and only if the plane passing through p�� q�� and r� has all the points of S� lying to one
side	

Clearly� the connection we need to establish is between the emptiness of circumcircles in the
plane and the emptiness of halfspaces in ��space	 We will prove the following claim	

Lemma� Consider � distinct points p� q� r� s in the plane� and let p�� q�� r�� s� be their respective
projections onto the paraboloid� z � x� � y�	 The point s lies within the circumcircle of
p� q� r if and only if s� lies on the lower side of the plane passing through p�� q�� r�	

To prove the lemma� 
rst consider an arbitrary �nonvertical� plane in ��space� which we assume
is tangent to the paraboloid above some point �a� b� in the plane	 To determine the equation
of this tangent plane� we take derivatives of the equation z � x� � y� with respect to x and y
giving


z


x
� �x�


z


y
� �y�

At the point �a� b� a��b�� these evaluate to �a and �b	 It follows that the plane passing through
these point has the form

z � �ax� �by � ��

To solve for � we know that the plane passes through �a� b� a� � b�� so we solve giving

a� � b� � �a � a� �b � b� ��

Implying that � � ��a� � b��	 Thus the plane equation is

z � �ax� �by � �a� � b���

If we shift the plane upwards by some positive amount r� we get the plane

z � �ax� �by � �a� � b�� � r��
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How does this plane intersect the paraboloid� Since the paraboloid is de
ned by z � x� � y�

we can eliminate z giving

x� � y� � �ax� �by � �a� � b�� � r��

which after some simple rearrangements is equal to

�x� a�� � �y � b�� � r��

This is just a circle	 Thus� we have shown that the intersection of a plane with the paraboloid
produces a space curve �which turns out to be an ellipse�� which when projected back onto the
�x� y��coordinate plane is a circle centered at �a� b�	

Thus� we conclude that the intersection of an arbitrary lower halfspace with the paraboloid�
when projected onto the �x� y��plane is the interior of a circle	 Going back to the lemma� when
we project the points p� q� r onto the paraboloid� the projected points p�� q� and r� de
ne a
plane	 Since p�� q�� and r�� lie at the intersection of the plane and paraboloid� the original
points p� q� r lie on the projected circle	 Thus this circle is the �unique� circumcircle passing
through these p� q� and r	 Thus� the point s lies within this circumcircle� if and only if its
projection s� onto the paraboloid lies within the lower halfspace of the plane passing through
p� q� r	

r
s

p’

q’

r’ s’

p

q

Figure ��� Planes and circles	

Now we can prove the main result	

Theorem� Given a set of points S in the plane �assume no � are cocircular�� and given �
points p� q� r � S� the triangle �pqr is a triangle of the Delaunay triangulation of S if
and only if triangle �p�q�r� is a face of the lower convex hull of the projected set S�	

From the de
nition of Delaunay triangulations we know that �pqr is in the Delaunay trian�
gulation if and only if there is no point s � S that lies within the circumcircle of pqr	 From
the previous lemma this is equivalent to saying that there is no point s� that lies in the lower
convex hull of S�� which is equivalent to saying that p�q�r� is a face of the lower convex hull	
This completes the proof	

In order to test whether a point s lies within the circumcircle de
ned by p� q� r� it su�ces to
test whether s� lies within the lower halfspace of the plane passing through p�� q�� r�	 If we
assume that p� q� r are oriented counterclockwise in the plane this this reduces to determining
whether the quadruple p�� q�� r�� s� is positively oriented� or equivalently whether s lies to the
left of the oriented circle passing through p� q� r	
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This leads to the incircle test we presented last time	

in�p� q� r� s� � det

�
BB�

px py p�x � p�y �
qx qy q�x � q�y �
rx ry r�x � r�y �
sx sy s�x � s�y �

�
CCA � ��

Voronoi Diagrams and Upper Envelopes� We know that Voronoi diagrams and Delaunay tri�
angulations are dual geometric structures	 We have also seen �informally� that there is a dual
relationship between points and lines in the plane� and in general� points and planes in ��space	
From this latter connection we argued that the problems of computing convex hulls of point
sets and computing the intersection of halfspaces are somehow �dual to one another	 It turns
out that these two notions of duality� are �not surprisingly� interrelated	 In particular� in
the same way that the Delaunay triangulation of points in the plane can be transformed to
computing a convex hull in ��space� it turns out that the Voronoi diagram of points in the
plane can be transformed into computing the intersection of halfspaces in ��space	

Here is how we do this	 For each point p � �a� b� in the plane� recall the tangent plane to the
paraboloid above this point� given by the equation

z � �ax� �by � �a� � b���

De
ne H��p� to be the set of points that are above this halfplane� that is�H��p� � f�x� y� z� j z 	
�ax��by� �a� � b��g	 Let S � fp�� p�� � � � � png be a set of points	 Consider the intersection of
the halfspaces H��pi�	 This is also called the upper envelope of these halfspaces	 The upper
envelope is an �unbounded� convex polyhedron	 If you project the edges of this upper envelope
down into the plane� it turns out that you get the Voronoi diagram of the points	

Theorem� Given a set of points S in the plane �assume no � are cocircular�� let H denote
the set of upper halfspaces de
ned by the previous transformation	 Then the Voronoi
diagram of H is equal to the projection onto the �x� y��plane of the ��skeleton of the
convex polyhedron which is formed from the intersection of halfspaces of S�	

p

p’

q

q’

Figure ��� Intersection of halfspaces	

It is hard to visualized this surface� but it is not hard to show why this is so	 Suppose we have
� points in the plane� p � �a� b� and q � �c� d�	 The corresponding planes are�

z � �ax� �by � �a� � b�� and z � �cx� �dy � �c� � d���
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If we determine the intersection of the corresponding planes and project onto the �x� y��
coordinate plane �by eliminating z from these equations� we get

x��a� �c� � y��b� �d� � �a� � c�� � �b� � d���

We claim that this is the perpendicular bisector between �a� b� and �c� d�	 To see this� observe
that it passes through the midpoint ��a � c���� �b� d���� between the two points since

a� c

�
��a� �c� �

b� d

�
��b� �d� � �a� � c�� � �b� � d���

and� its slope is ��a � c���b � d�� which is the negative reciprocal of the line segment from
�a� b� to �c� d�	 From this it can be shown that the intersection of the upper halfspaces de
nes
a polyhedron whose edges project onto the Voronoi diagram edges	

Lecture X�� Topological Plane Sweep

�Supplemental�
Read� The material on topological plane sweep is not discussed in any of our readings	 The
algorithm for topological plane sweep can be found in the paper� �Topologically sweeping an ar�
rangement by H	 Edelsbrunner and L	 J	 Guibas� J
 Comput
 Syst
 Sci
� �� ������� ���$���� with
Corrigendum in the same journal� volume �� ������� ���$���	

Topological Plane Sweep� In the last two lectures we have introduced arrangements of lines and
geometric duality as important tools in solving geometric problems on lines and points	 Today
give an e�cient algorithm for sweeping an arrangement of lines	

As we will see� many problems in computational geometry can be solved by applying line�
sweep to an arrangement of lines	 Since the arrangement has size O�n��� and since there are
O�n�� events to be processed� each involving an O�logn� heap deletion� this typically leads to
algorithms running in O�n� logn� time� using O�n�� space	 It is natural to ask whether we
can dispense with the additional O�logn� factor in running time� and whether we need all of
O�n�� space �since in theory we only need access to the current O�n� contents of the sweep
line�	

We discuss a variation of plane sweep called topological plane sweep	 This method runs inO�n��
time� and uses only O�n� space �by essentially constructing only the portion of the arrangement
that we need at any point�	 Although it may appear to be somewhat sophisticated� it can
be implemented quite e�ciently� and is claimed to outperform conventional plane sweep on
arrangements of any signi
cant size �e	g	 over �� lines�	

Cuts and topological lines� The algorithm is called topological plane sweep because we do not
sweep a straight vertical line through the arrangement� but rather we sweep a curved topological

line that has the essential properties of a vertical sweep line in the sense that this line intersects
each line of the arrangement exactly once	 The notion of a topological line is an intuitive one�
but it can be made formal in the form of something called a cut	 Recall that the faces of
the arrangement are convex polygons �possibly unbounded�	 �Assuming no vertical lines� the
edges incident to each face can naturally be partitioned into the edges that are above the face�
and those that are below the face	 De
ne a cut in an arrangement to be a sequence of edges
c�� c�� � � � � cn� in the arrangement� one taken from each line of the arrangement� such that for
� � i � n � �� ci and ci�� are incident to the same face of the arrangement� and ci is above
the face and ci�� is below the face	 An example of a topological line and the associated cut is
shown below	
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c1

c4c3

c2

c5

Figure ��� Topological line and associated cut	

The topological plane sweep starts at the leftmost cut of the arrangement	 This consists of
all the left�unbounded edges of the arrangement	 Observe that this cut can be computed in
O�n logn� time� because the lines intersect the cut in inverse order of slope	 The topological
sweep line will sweep to the right until we come to the rightmost cut� which consists all of the
right�unbounded edges of the arrangement	 The sweep line advances by a series of what are
called elementary steps	 In an elementary steps� we 
nd two consecutive edges on the cut that
meet at a vertex of the arrangement �we will discuss later how to determine this�� and push
the topological sweep line through this vertex	 Observe that on doing so these two lines swap
in their order along the sweep line	 This is shown below	

Figure ��� Elementary step	

It is not hard to show that an elementary step is always possible� since for any cut �other than
the rightmost cut� there must be two consecutive edges with a common right endpoint	 In
particular� consider the edge of the cut whose right endpoint has the smallest x�coordinate	 It
is not hard to show that this endpoint will always allow an elementary step	 Unfortunately�
determining this vertex would require at least O�logn� time �if we stored these endpoints in
a heap� sorted by x�coordinate�� and we want to perform each elementary step in O��� time	
Hence� we will need to 
nd some other method for 
nding elementary steps	

Upper and Lower Horizon Trees� To 
nd elementary steps� we introduce two simple data struc�
tures� the upper horizon tree �UHT� and the lower horizon tree �LHT�	 To construct the upper
horizon tree� trace each edge of the cut to the right	 When two edges meet� keep only the one
with the higher slope� and continue tracing it to the right	 The lower horizon tree is de
ned
symmetrically	 There is one little problem in these de
nitions in the sense that these trees
need not be connected �forming a forest of trees� but this can be 
xed conceptually at least by
the addition of a vertical line at x � ��	 For the upper horizon we think of its slope as being
�� and for the lower horizon we think of its slope as being ��	 Note that we consider the
left endpoints of the edges of the cut as not belonging to the trees� since otherwise they would
not be trees	 It is not hard to show that with these modi
cations� these are indeed trees	 Each
edge of the cut de
nes exactly one line segment in each tree	 An example is shown below	

The important things about the UHT and LHT is that they give us an easy way to determine
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Upper Horizon Tree Lower Horizon Tree

Figure ��� Upper and lower horizon trees	

the right endpoints of the edges on the cut	 Observe that for each edge in the cut� its right
endpoint results from a line of smaller slope intersecting it from above �as we trace it from left
to right� or from a line of larger slope intersecting it from below	 It is easy to verify that the
UHT and LHT determine the 
rst such intersecting line of each type� respectively	 It follows
that if we intersect the two trees� then the segments they share in common correspond exactly
to the edges of the cut	 Thus� by knowing the UHT and LHT� we know where are the right
endpoints are� and from this we can determine easily which pairs of consecutive edges share
a common right endpoint� and from this we can determine all the elementary steps that are
legal	 We store all the legal steps in a stack �or queue� or any list is 
ne�� and extract them
one by one	

The sweep algorithm� Here is an overview of the topological plane sweep	

��� Input the lines and sort by slope	 Let C be the initial �leftmost� cut� a list of lines in
decreasing order of slope	

��� Create the initial UHT incrementally by inserting lines in decreasing order of slope	 Create
the initial LHT incrementally by inserting line in increasing order of slope	 �More on this
later	�

��� By consulting the LHT and UHT� determine the right endpoints of all the edges of the
initial cut� and for all pairs of consecutive lines �li� li��� sharing a common right endpoint�
store this pair in stack S	

��� Repeat the following elementary step until the stack is empty �implying that we have
arrived at the rightmost cut�	

�a� Pop the pair �li� li��� from the top of the stack S	

�b� Swap these lines within C� the cut �we assume that each line keeps track of its position
in the cut�	

�c� Update the horizon trees	 �More on this later	�

�d� Consulting the changed entries in the horizon tree� determine whether there are any
new cut edges sharing right endpoints� and if so push them on the stack S	

The important un
nished business is to show that we can build the initial UHT and LHT in
O�n� time� and to show that� for each elementary step� we can update these trees and all other
relevant information in O��� amortized time	 By amortized time we mean that� even though
a single elementary step can take more than O��� time� the total time needed to perform all
O�n�� elementary steps is O�n��� and hence the average time for each step is O���	

This is done by an adaptation of the same incremental �face walking technique we used in the
incremental construction of line arrangements	 Let�s consider just the UHT� since the LHT is
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symmetric	 To create the initial �leftmost� UHT we insert the lines one by one in decreasing
order of slope	 Observe that as each new line is inserted it will start above all of the current
lines	 The uppermost face of the current UHT consists of a convex polygonal chain� see the

gure below left	 As we trace the newly inserted line from left to right� there will be some
point at which it 
rst hits this upper chain of the current UHT	 By walking along the chain
from left to right� we can determine this intersection point	 Each segment that is walked over
is never visited again by this initialization process �because it is no longer part of the upper
chain�� and since the initial UHT has a total of O�n� segments� this implies that the total time
spent in walking is O�n�	 Thus� after the O�n logn� time for sorting the segments� the initial
UHT tree can be built in O�n� additional time	

Initial UHT construction. Updating the UHT.

new line

v v

Figure ��� Constructing and updating the UHT	

Next we show how to update the UHT after an elementary step	 The process is quite similar�
as shown in the 
gure right	 Let v be the vertex of the arrangement which is passed over in
the sweep step	 As we pass over v� the two edges swap positions along the sweep line	 The new
lower edge� call it l� which had been cut o� of the UHT by the previous lower edge� now must
be reentered into the tree	 We extend l to the left until it contacts an edge of the UHT	 At its

rst contact� it will terminate �and this is the only change to be made to the UHT�	 In order
to 
nd this contact� we start with the edge immediately below l the current cut	 We traverse
the face of the UHT in counterclockwise order� until 
nding the edge that this line intersects	
Observe that we must eventually 
nd such an edge because l has a lower slope than the other
edge intersecting at v� and this edge lies in the same face	

Analysis� A careful analysis of the running time can be performed using the same amortization
proof �based on pebble counting� that was used in the analysis of the incremental algorithm	
We will not give the proof in full detail	 Observe that because we maintain the set of legal
elementary steps in a stack �as opposed to a heap as would be needed for standard plane sweep��
we can advance to the next elementary step in O��� time	 The only part of the elementary
step that requires more than constant time is the update operations for the UHT and LHT	
However� we claim that the total time spent updating these trees is O�n��	 The argument
is that when we are tracing the edges �as shown in the previous 
gure� we are �essentially
traversing the edges in the zone for L in the arrangement	 �This is not quite true� because
there are edges above l in the arrangement� which have been cut out of the upper tree� but
the claim is that their absence cannot increase the complexity of this operation� only decrease
it	 However� a careful proof needs to take this into account	� Since the zone of each line in the
arrangement has complexity O�n�� all n zones have total complexity O�n��	 Thus� the total
time spent in updating the UHT and LHT trees is O�n��	
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Lecture X�� Ham�Sandwich Cuts

�Supplemental�

Ham Sandwich Cuts of Linearly Separated Point Sets� We are given n red points A� and m
blue points B� and we want to compute a single line that simultaneously bisects both sets	 �If
the cardinality of either set is odd� then the line passes through one of the points of the set	�
We make the simplifying assumption that the sets are separated by a line	 �This assumption
makes the problem much simpler to solve� but the general case can still be solved in O�n��
time using arrangements	�

To make matters even simpler we assume that the points have been translated and rotated
so this line is the y�axis	 Thus all the red points �set A� have positive x�coordinates� and
hence their dual lines have positive slopes� whereas all the blue points �set B� have negative
x�coordinates� and hence their dual lines have negative slopes	 As long as we are simplifying
things� let�s make one last simpli
cation� that both sets have an odd number of points	 This
is not di�cult to get around� but makes the pictures a little easier to understand	

Consider one of the sets� say A	 Observe that for each slope there exists one way to bisect the
points	 In particular� if we start a line with this slope at positive in
nity� so that all the points
lie beneath it� and drop in downwards� eventually we will arrive at a unique placement where
there are exactly �n � ���� points above the line� one point lying on the line� and �n � ����
points below the line �assuming no two points share this slope�	 This line is called the median

line for this slope	

What is the dual of this median line� If we dualize the points using the standard dual trans�
formation� D�a� b� � y � ax � b� then we get n lines in the plane	 By starting a line with
a given slope above the points and translating it downwards� in the dual plane we moving a
point from �� upwards in a vertical line	 Each time the line passes a point in the primal
plane� the vertically moving point crosses a line in the dual plane	 When the translating line
hits the median point� in the dual plane the moving point will hit a dual line such that there
are exactly �n� ���� dual lines above this point and �n� ���� dual lines below this point	 We
de
ne a point to be at level k� Lk� in an arrangement if there are at most k � � lines above
this point and at most n� k lines below this point	 The median level in an arrangement of n
lines is de
ned to be the d�n� ����e�th level in the arrangement	 This is shown as M �A� in
the following 
gure on the left	

M(A) M(A)

M(B)

Ham sandwich point

Dual arrangement of A. Overlay of A and B’s median levels.

Figure ��� Ham sandwich� Dual formulation	

Thus� the set of bisecting lines for set A in dual form consists of a polygonal curve	 Because
this curve is formed from edges of the dual lines in A� and because all lines in A have positive
slope� this curve is monotonically increasing	 Similarly� the median for B� M �B�� is a polygonal
curve which is monotonically decreasing	 It follows that A and B must intersect at a unique
point	 The dual of this point is a line that bisects both sets	
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We could compute the intersection of these two curves by a simultaneous topological plane
sweep of both arrangements	 However it turns out that it is possible to do much better� and in
fact the problem can be solved in O�n�m� time	 Since the algorithm is rather complicated� I
will not describe the details� but here are the essential ideas	 The algorithm operates by prune
and search	 In O�n�m� time we will generate a hypothesis for where the ham sandwich point
is in the dual plane� and if we are wrong� we will succeed in throwing away a constant fraction
of the lines from future consideration	

First observe that for any vertical line in the dual plane� it is possible to determine in O�n�m�
time whether this line lies to the left or the right of the intersection point of the median levels�
M �A� and M �B�	 This can be done by computing the intersection of the dual lines of A with
this line� and computing their median in O�n� time� and computing the intersection of the
dual lines of B with this line and computing their median in O�m� time	 If A�s median lies
below B�s median� then we are to the left of the ham sandwich dual point� and otherwise we
are to the right of the ham sandwich dual point	 It turns out that with a little more work� it
is possible to determine in O�n � m� time whether the ham sandwich point lies to the right
or left of a line of arbitrary slope	 The trick is to use prune and search	 We 
nd two lines L�

and L� in the dual plane �by a careful procedure that I will not describe�	 These two lines
de
ne four quadrants in the plane	 By determining which side of each line the ham sandwich
point lies� we know that we can throw away any line that does not intersect this quadrant from
further consideration	 It turns out that by a judicious choice of L� and L�� we can guarantee
that a fraction of at least �n � m��� lines can be thrown away by this process	 We recurse
on the remaining lines	 By the same sort of analysis we made in the Kirkpatrick and Seidel
prune and search algorithm for upper tangents� it follows that in O�n � m� time we will 
nd
the ham sandwich point	
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