Lecture 7: Voronoi Diagrams

Presented by Allen Miu 6.838 Computational Geometry September 27, 2001

Post Office: What is the area of service?

Definition of Voronoi Diagram

- Let *P* be a set of *n* distinct points (sites) in the plane.
- The Voronoi diagram of *P* is the subdivision of the plane into *n* cells, one for each site.
- A point q lies in the cell corresponding to a site p_i ∈ P iff
 Euclidean_Distance(q, p_i) < Euclidean_distance(q, p_j), for each p_i ∈ P, j ≠ i.

Demo

http://www.diku.dk/students/duff/Fortune/ http://www.msi.umn.edu/~schaudt/voronoi/ voronoi.html

Voronoi Diagram Example: 1 site

Two sites form a perpendicular bisector

Voronoi Diagram is a line that extends infinitely in both directions, and the two half planes on either side.

Collinear sites form a series of parallel lines

Voronoi Cells and Segments

Voronoi Cells and Segments

Who wants to be a Millionaire?

Which of the following is true for 2-D Voronoi diagrams?

Four or more non-collinear sites are...

- 1. sufficient to create a bounded cell
- 2. necessary to create a bounded cell
- 3. 1 and 2
- 4. none of above

Who wants to be a Millionaire?

Which of the following is true for 2-D Voronoi diagrams?

Four or more non-collinear sites are...

- 1. sufficient to create a bounded cell
- 2. necessary to create a bounded cell
- 3. 1 and 2
- 4. none of above

Summary of Voronoi Properties

A point q lies on a Voronoi edge between sites p_i and p_j *iff* the largest empty circle centered at q touches only p_i and p_j

- A Voronoi edge is a subset of locus of points equidistant from p_i and p_i

Summary of Voronoi Properties

A point q is a vertex *iff* the largest empty circle centered at q touches at least 3 sites

 A Voronoi vertex is an intersection of 3 more segments, each equidistant from a pair of sites

Outline

- Definitions and Examples
- Properties of Voronoi diagrams
- Complexity of Voronoi diagrams
- Constructing Voronoi diagrams
 - Intuitions
 - Data Structures
 - Algorithm
- Running Time Analysis
- Demo
- Duality and degenerate cases

Voronoi diagrams have linear complexity $\{|v|, |e| = O(n)\}$ Claim: For $n \ge 3$, $|v| \le 2n - 5$ and $|e| \le 3n - 6$ Proof: (Easy Case)

Collinear sites $\rightarrow |v| = 0, |e| = n - 1$

Voronoi diagrams have linear complexity $\{|v|, |e| = O(n)\}$

Claim: For $n \ge 3$, $|v| \le 2n - 5$ and $|e| \le 3n - 6$ Proof: (General Case)

• Euler's Formula: for connected, planar graphs, |v| - |e| + f = 2

Where:

- |v| is the number of vertices
- |e| is the number of edges
- f is the number of faces

Voronoi diagrams have linear complexity $\{|v|, |e| = O(n)\}$ Claim: For $n \ge 3$, $|v| \le 2n - 5$ and $|e| \le 3n - 6$ Proof: (General Case)

• For Voronoi graphs, $f = n \rightarrow (|v| + 1) - |e| + n = 2$

Voronoi diagrams have linear
complexity
$$\{|v|, |e| = O(n)\}$$

Moreover,

$$\sum_{v \in Vor(P)} \deg(v) = 2 \cdot |e|$$

and

$$\forall v \in Vor(P), \quad \deg(v) \ge 3$$

SO

$$2 \cdot |e| \ge 3(|v|+1)$$

together with

$$(|v|+1) - |e|+n = 2$$

we get, for $n \ge 3$

$$|v| \le 2n - 5$$
$$|e| \le 3n - 6$$

Outline

- Definitions and Examples
- Properties of Voronoi diagrams
- Complexity of Voronoi diagrams
- Constructing Voronoi diagrams
 - Intuitions
 - Data Structures
 - Algorithm
- Running Time Analysis
- Demo
- Duality and degenerate cases

Given a half plane intersection algorithm...

Given a half plane intersection algorithm...

- Half plane intersection O($n^2 \log n$)
- Fortune's Algorithm
 - Sweep line algorithm
 - Voronoi diagram constructed as horizontal line sweeps the set of sites from top to bottom
 - Incremental construction → maintains portion of diagram which cannot change due to sites below sweep line, keeping track of incremental changes for each site (and Voronoi vertex) it "sweeps"

Maintain a representation of the locus of points q that are closer to some site p_i above the sweep line than to the line itself (and thus to any site below the line).

The set of parabolic arcs form a beach-line that bounds the locus of all such points

Beach Line properties

- Voronoi edges are traced by the break points as the sweep line moves down.
 - Emergence of a new break point(s) (from formation of a new arc or a fusion of two existing break points) identifies a new edge
- Voronoi vertices are identified when two break points meet (fuse).
 - Decimation of an old arc identifies new vertex

Data Structures

- Current state of the Voronoi diagram
 - Doubly linked list of half-edge, vertex, cell records
- Current state of the beach line
 - Keep track of break points
 - Keep track of arcs currently on beach line
- Current state of the sweep line
 - Priority event queue sorted on decreasing y-coordinate

Doubly Linked List (D)

• Goal: a simple data structure that allows an algorithm to traverse a Voronoi diagram's segments, cells and vertices

Doubly Linked List (D)

- Divide segments into uni-directional half-edges
- A chain of counter-clockwise half-edges forms a cell
- Define a half-edge's "twin" to be its opposite half-edge of the same segment

Doubly Linked List (D)

- Cell Table
 - $Cell(p_i)$: pointer to any incident half-edge
- Vertex Table
 - $-v_i$: list of pointers to all incident half-edges
- Doubly Linked-List of half-edges; each has:
 - Pointer to Cell Table entry
 - Pointers to start/end vertices of half-edge
 - Pointers to previous/next half-edges in the CCW chain
 - Pointer to twin half-edge

Balanced Binary Tree (T)

- Internal nodes represent break points between two arcs
 - Also contains a pointer to the *D* record of the edge being traced
- Leaf nodes represent arcs, each arc is in turn represented by the site that generated it
 - Also contains a pointer to a potential circle event

Event Queue (Q)

- An event is an interesting point encountered by the sweep line as it sweeps from top to bottom
 - Sweep line makes discrete stops, rather than a continuous sweep
- Consists of Site Events (when the sweep line encounters a new site point) and Circle Events (when the sweep line encounters the *bottom* of an empty circle touching 3 or more sites).
- Events are prioritized based on y-coordinate

Site Event

A new arc appears when a new site appears.

Site Event

A new arc appears when a new site appears.

Site Event

Original arc above the new site is broken into two \rightarrow Number of arcs on beach line is O(*n*)

Circle Event

Sweep line helps determine that the circle is indeed empty.

Event Queue Summary

- Site Events are
 - given as input
 - represented by the xy-coordinate of the site point
- Circle Events are
 - computed on the fly (intersection of the two bisectors in between the three sites)
 - represented by the xy-coordinate of the lowest point of an empty circle touching three or more sites
 - "anticipated", these newly generated events may be false and need to be removed later
- Event Queue prioritizes events based on their ycoordinates

Summarizing Data Structures

- Current state of the Voronoi diagram
 - Doubly linked list of half-edge, vertex, cell records
- Current state of the beach line
 - Keep track of break points
 - Inner nodes of binary search tree; represented by a tuple
 - Keep track of arcs currently on beach line
 - Leaf nodes of binary search tree; represented by a site that generated the arc
- Current state of the sweep line
 - Priority event queue sorted on decreasing y-coordinate

Algorithm

- 1. Initialize
 - Event queue $Q \leftarrow$ all site events
 - Binary search tree T $\leftarrow \emptyset$
 - Doubly linked list $D \leftarrow \emptyset$
- 2. While Q not \emptyset ,
 - Remove event (e) from Q with largest ycoordinate
 - HandleEvent(e, T, D)

Handling Site Events

- 1. Locate the existing arc (if any) that is above the new site
- 2. Break the arc by replacing the leaf node with a sub tree representing the new arc and its break points
- 3. Add two half-edge records in the doubly linked list
- 4. Check for potential circle event(s), add them to event queue if they exist

Locate the existing arc that is above the new site

- The x coordinate of the new site is used for the binary search
- The x coordinate of each breakpoint along the root to leaf path is computed on the fly

Break the Arc

Corresponding leaf replaced by a new sub-tree

Checking for Potential Circle Events

- Scan for triple of consecutive arcs and determine if breakpoints converge
 - Triples with new arc in the middle do not have break points that converge

Checking for Potential Circle Events

- Scan for triple of consecutive arcs and determine if breakpoints converge
 - Triples with new arc in the middle do not have break points that converge

Checking for Potential Circle Events

- Scan for triple of consecutive arcs and determine if breakpoints converge
 - Triples with new arc in the middle do not have break points that converge

Converging break points may not always yield a circle event

• Appearance of a new site before the circle event makes the potential circle non-empty

(The original circle event becomes a *false alarm*)

Handling Site Events

- 1. Locate the leaf representing the existing arc that is above the new site
 - Delete the potential circle event in the event queue
- 2. Break the arc by replacing the leaf node with a sub tree representing the new arc and break points
- 3. Add a new edge record in the doubly linked list
- 4. Check for potential circle event(s), add them to queue if they exist
 - Store in the corresponding leaf of T a pointer to the new circle event in the queue

Handling Circle Events

- 1. Add vertex to corresponding edge record in doubly linked list
- 2. Delete from T the leaf node of the disappearing arc and its associated circle events in the event queue
- 3. Create new edge record in doubly linked list
- 4. Check the new triplets formed by the former neighboring arcs for potential circle events

A Circle Event

Deleting disappearing arc

Deleting disappearing arc

Create new edge record

break point $< p_k, p_m >$

Minor Detail

- Algorithm terminates when Q = Ø, but the beach line and its break points continue to trace the Voronoi edges
 - Terminate these "half-infinite" edges via a bounding box

Algorithm Termination

Algorithm Termination

Ø

Q

Algorithm Termination

Terminate half-lines with a bounding box!

Q

Outline

- Definitions and Examples
- Properties of Voronoi diagrams
- Complexity of Voronoi diagrams
- Constructing Voronoi diagrams
 - Intuitions
 - Data Structures
 - Algorithm
- Running Time Analysis
- Demo
- Duality and degenerate cases

Handling Site Events

- 1. Locate the leaf representing the existing arc that is above the new site
 - Delete the potential circle event in the event queue
- 2. Break the arc by replacing the leaf node with a sub tree representing the new arc and break points
- 3. Add a new edge record in the link list
- 4. Check for potential circle event(s), add them to queue if they exist
 - Store in the corresponding leaf of T a pointer to the new circle event in the queue

 $O(\log n)$

Running Time

O(1)

O(1)

O(1)

Handling Circle Events

Running Time

1. Delete from T the leaf node of the disappearing arc and its associated circle events in the event queue

- $O(\log n)$
- 2. Add vertex record in doubly link list
- 3. Create new edge record in doubly link list
- 4. Check the new triplets formed by the former neighboring arcs for potential circle events
- O(1) O(1)

O(1)

Total Running Time

• Each new site can generate at most two new arcs

→beach line can have at most 2n - 1 arcs →at most O(n) site and circle events in the queue

- Site/Circle Event Handler O(log *n*)
- \rightarrow O(*n* log *n*) total running time

Is Fortune's Algorithm Optimal?

• We can sort numbers using any algorithm that constructs a Voronoi diagram!

• Map input numbers to a position on the number line. The resulting Voronoi diagram is doubly linked list that forms a chain of unbounded cells in the left-to-right (sorted) order.
Outline

- Definitions and Examples
- Properties of Voronoi diagrams
- Complexity of Voronoi diagrams
- Constructing Voronoi diagrams
 - Intuitions
 - Data Structures
 - Algorithm
- Running Time Analysis
- Demo
- Duality and degenerate cases

Voronoi Diagram/Convex Hull Duality

Sites sharing a half-infinite edge are convex hull vertices

Degenerate Cases

- Events in Q share the same y-coordinate – Can additionally sort them using x-coordinate
- Circle event involving more than 3 sites
 - Current algorithm produces multiple degree 3
 Voronoi vertices joined by zero-length edges
 - Can be fixed in post processing

Degenerate Cases

- Site points are collinear (break points neither converge or diverge)
 - Bounding box takes care of this
- One of the sites coincides with the lowest point of the circle event
 - Do nothing

Site coincides with circle event: the same algorithm applies!

- 1. New site detected
- 2. Break one of the arcs an infinitesimal distance away from the arc's end point

Site coincides with circle event

Summary

- Voronoi diagram is a useful planar subdivision of a discrete point set
- Voronoi diagrams have linear complexity and can be constructed in O(*n* log *n*) time
- Fortune's algorithm (optimal)