
The minimum cut algorithm ofStoer and WagnerKurt Mehlhorn and Christian UhrigJune 27, 1995

1. Min-cuts in undirected graphs.Let G = (V ;E) be an undirected graph (self-loops and parallel edges are al-lowed) and let w : E ! <�0 be a non-negative weight function on the edges ofG. A cut C of G is any subset of V with ; 6= C 6= V . The weight of a cut is thetotal weight of the edges crossing the cut, i.e.,w(E) = Xe2E;je\Cj=1w(e):A minimum cut is a cut of minimum weight. For a pair fs,tg of distinct verticesof G a cut is called an s-t cut if C contains exactly one of s and t. We describea particularly simple and e�cient min-cut algorithm due to Stoer and Wagner([SW94]). The algorithm runs in time O(nm + n2 logn).The algorithm works in phases. In each phase it determines a pair of verticess and t and a minimum s-t cut C. If there is a minimum cut of G separating sand t then C is a minimum cut of G. If not then any minimum cut of G has sand t on the same side and therefore the graph obtained from G by combinings and t has the same minimum cut as G. So a phase determines vertices s andt and a minimum s-t cut C and then combines s and t into one node. Aftern � 1 phases the graph is shrunk to a single node and one of the phases musthave determined a minimum cut of G.h mincut.c 1 i �#include <LEDA/graph_alg.h>#include <LEDA/ugraph.h>#include <LEDA/stream.h>#include <LEDA/node_pq.h>listhnodei minimum cut (const graph &G0 ; edge arrayhinti &weight)f h initialization 2 i=� n is now the number of nodes of the current graph and a is a �xedvertex �=while (n � 2) fh a phase 5 igh output best cut 4 ig2. We call our input graph G0 and our current Graph G. G is of typeUGRAPHhlisthnodei �; inti. Every node of G represents a set of nodes ofG0 . This set is stored in a linear list pointed to by G[v]. Every edge e = fv; wgof G represents a set of edges of G0 , namely ffx; yg;x 2 G[v] and y 2 G[w]g.The total weight of these edges is stored in G[e].It is easy to initialize G. We simply make G a copy of G0 (except for self-loops) and initialize G[v] to the appropriate singleton set for every vertex v ofG. 1

h initialization 2 i �typedef listhnodei nodelist;UGRAPHhnodelist �; inti G;node v; x;edge e;node arrayhnodei partner (G0);forall nodes (x;G0) fpartner [x] = G:new node (new nodelist);G[partner [x]]~append (x);gforall edges (e;G0)if (source (e) 6= target (e))G:new edge (partner [source (e)]; partner [target (e)];weight [e]);See also section 3.This code is used in section 1.3. We also need to �x a particular node a of G, de�ne n as the number ofnodes of G, and introduce variables to store the currently best cut.h initialization 2 i +�node a = G:�rst node ();int n = G:number of nodes ();listhnodei best cut ;int best value = MAXINT ;int cut weight ;4. Outputting the best cut is easy.h output best cut 4 i �return best cut ;This code is used in section 1.5. We now come to the heart of the matter, a phase. A phase initializes a setA to the singleton set fag and then successively merges all the other nodes ofG into A. In each stage the node v 62 A which maximizesw(v;A) =Xfw(e); e = fv; yg for some y 2 Agis merged into A. Let s and t be the last two vertices added to A in a phase.The cut C computed by the phase is the cut consisting of node t only; in thegraph G0 this corresponds to the cut G[t].2

Lemma 1 Let s and t be the last two nodes merged into A during a phase.Then ftg is a minimum s-t cut.Proof:Let C 0 be any s-t cut. We show that w(C 0) � w(ftg). Let v1; : : : ; vn be theorder in which the nodes are added to A. Then v1 = a; vn�1 = s, and vn = t.Call a vertex v = vi critical if i � 2 and vi and vi�1 belong to di�erentsides of C 0. Note that t is critical. Let k be the number of critical nodesand let i1, i2,..., ik be the indices of the critical nodes. Then ik = n. Forinteger i use Ai to denote the set fv1; : : : ; vig. Then w(ftg) = w(vik ; Aik�1)and w(C 0) �Pkj=1w(vij ; Aij�1 nAij�1�1) since any edge counted on the rightside is also counted on the left and edge costs are non-negative. We now showfor all integer l, 1 � l � k, thatw(vil ; Ail�1) � lXj=1w(vij ; Aij�1 nAij�1�1):For l = 1 we have equality. So assume l � 2. We havew(vil ; Ail�1) = w(vil ; Ail�1�1) + w(vil ; Ail�1 nAil�1�1)� w(vil�1 ; Ail�1�1) +w(vil ; Ail�1 nAil�1�1)� l�1Xj=1w(vij ; Aij�1 nAij�1�1) + w(vil ; Ail�1 nAil�1�1)� lXj=1w(vij ; Aij�1 nAij�1�1):Here the �rst inequality follows from the fact that vil�1 is added to Ail�1�1 andnot vil and the second inequality uses the induction hypothesis.h a phase 5 i �h determine s and t and the value cut weight of the cut ftg 6 i;if (cut weight < best value) fbest cut = �(G[t]);best value = cut weight ;gh combine s and t 7 i;n��;This code is used in section 1. 3

6. How can we determine the order in which the vertices are merged into A?This can be done in a manner akin to Prim's minimum spanning tree algorithm.We keep the vertices v, v 62 A, in a priority queue ordered according to w(v;A).In each stage we select the node, say u, with maximal w(u;A) and add it toA. This increases w(v;A) by w(fv; ug) for any vertex v 62 A and v 6= u. SinceLEDA priority queues select minimal values we store �w(v;A) in the queue.The node added last to A is the vertex t. The value cut weight is w(t; At).h determine s and t and the value cut weight of the cut ftg 6 i �node t = a;node s;node arrayhbooli in PQ (G);node pqhinti PQ (G);forall nodes (v;G)if (v 6= a) fPQ :insert (v; 0);== w(v;A) = 0 if there is no edge connecting v to Ain PQ [v] = true ;gforall adj edges (e; a)PQ :decrease inf (G:opposite (a; e);PQ :inf (G:opposite (a; e)) �G[e]);while (:PQ :empty ()) fs = t;cut weight = �PQ :inf (PQ :�nd min ());t = PQ :del min ();in PQ [t] = false ;forall adj edges (e; t) fif (in PQ [v = G:opposite (t; e)]) PQ :decrease inf (v;PQ :inf (v)�G[e]);ggThis code is used in section 5.7. It remains to combine s and t. We do so by deleting t from G and movingall edges incident to t to s. More precisley, we need to do three things:� Add G[t] to G[s] (G[s]~conc (�(G[t]))).� Increase G[fs; vg] by G[ft; vg] for all vertices v with ft; vg 2 E and v 6= s.� Delete t and all its incident edges from G (G:del node (t)).The second step rises two di�culties: The edge fs; vg might not exist andthere is no simple way to go from the edge ft; vg to the edge fs; vg. We overcomethese problems by �rst recording the edge fs; vg in s edge [v] for every neighbor4

v of s. We then go through the neighbors v of t: If v is connected to s then wesimply increase G[fs; vg] by G[ft; vg], if v is not connected to s and di�erentfrom s then we add a new edge fs; vg with weight G[ft; vg].h combine s and t 7 i �G[s]~conc (�(G[t]));node arrayhedgei s edge (G; nil);forall adj edges (e; s) s edge [G:opposite (s; e)] = e;forall adj edges (e; t) fif (s edge [v = G:opposite (t; e)] � nil) G:new edge (s; v;G[e]);else G[s edge [v]] += G[e];gdelete G[t];G:del node (t);This code is used in section 5.8. The running time of our algorithm is clearly at most n times the runningtime of a phase. A phase takes time O(m + n logn) to merge all nodes intothe set A (the argument is the same as for Prim's algorithm) and time O(n)to record the cut computed and to merge s and t. The total running time istherefore O(nm+ n2 log n).Table 1 lists the running times (in seconds) for some experiments with ran-dom graphs on a SPARCstation 10/52. The �rst column gives the number ofnodes and the �rst row the number of edges. If there are more than 400 nodesthe running time is about 9nm+ 8:5n2 log n �sec.References[SW94] M. Stoer, and F. Wagner. A Simple Min Cut Algorithm.Algorithms - ESA '94, LNCS 855, 141{147, 1994.
5

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000100 0.52 0.96 1.31 1.51 1.76 2.03 2.56 3.02 2.75 3.54200 1.72 2.91 4.01 4.62 5.62 6.43 7.26 7.74 8.58 9.29300 3.19 5.17 7.13 8.79 10.57 12.37 13.33 14.66 16.62 17.86400 4.59 8.12 11.31 14.02 16.40 18.82 20.61 22.80 26.04 28.12500 6.26 11.04 15.43 18.93 22.47 26.05 29.14 32.17 35.79 40.12600 8.42 14.50 20.09 24.81 29.89 33.75 38.84 42.38 46.71 50.54700 10.91 18.08 24.19 31.03 36.55 43.24 48.47 53.72 61.18 68.01800 13.74 22.81 30.92 39.65 46.75 52.78 58.95 64.46 71.39 79.24900 15.71 25.38 35.80 42.83 52.73 60.99 68.59 76.98 85.08 92.241000 18.70 31.75 41.38 50.95 60.13 70.62 79.04 87.96 96.38 107.13Table 1: Some experimental results
6

Indexa: 3.append : 2.best cut : 3, 4, 5.best value : 3, 5.conc : 7.cut weight : 3, 5, 6.decrease inf : 6.del min : 6.del node : 7.e: 2.empty : 6.false : 6.�nd min : 6.�rst node : 3.G: 2.G0: 1, 2, 5.in PQ : 6.inf : 6.insert : 6.MAXINT: 3.minimum cut : 1.n: 3.new edge : 2, 7.new node : 2.nil : 7.nodelist: 2.number of nodes : 3.opposite : 6, 7.partner : 2.PQ: 6.s: 6.s edge : 7.source : 2.t: 6.target : 2.true : 6.v: 2.w: 1.weight : 1, 2.x: 2. 7

List of Re�nementsh a phase 5 i Used in section 1.h combine s and t 7 i Used in section 5.h determine s and t and the value cut weight of the cut ftg 6 i Used in section 5.h initialization 2, 3 i Used in section 1.h mincut.c 1 ih output best cut 4 i Used in section 1.

8

