The minimum cut algorithm of
Stoer and Wagner

Kurt Mehlhorn and Christian Uhrig

June 27, 1995

1. Min-cuts in undirected graphs.

Let G = (V, E) be an undirected graph (self-loops and parallel edges are al-
lowed) and let w : E — R>(be a non-negative weight function on the edges of
G. A cut C of G is any subset of V with § # C # V. The weight of a cut is the
total weight of the edges crossing the cut, i.e.,

wE) = Y. we).

e€B;jlenC|=1

A minimum cut is a cut of minimum weight. For a pair {s,t} of distinct vertices
of G a cut is called an s-t cut if C contains exactly one of s and t. We describe
a particularly simple and efficient min-cut algorithm due to Stoer and Wagner
([SW94]). The algorithm runs in time O(nm + n?logn).

The algorithm works in phases. In each phase it determines a pair of vertices
s and ¢ and a minimum s-¢ cut C. If there is a minimum cut of G separating s
and ¢ then C is a minimum cut of G. If not then any minimum cut of G has s
and ¢ on the same side and therefore the graph obtained from G by combining
s and t has the same minimum cut as G. So a phase determines vertices s and
t and a minimum s-¢ cut C and then combines s and ¢ into one node. After
n — 1 phases the graph is shrunk to a single node and one of the phases must
have determined a minimum cut of G.

(mincut.c 1) =
#include <LEDA/graph_alg.h>
#include <LEDA/ugraph.h>
#include <LEDA/stream.h>
#include <LEDA/node_pq.h>
list(node) minimum_cut(const graph &G0, edge_array (int) &weight)

{initialization 2)

/* mn is now the number of nodes of the current graph and a is a fixed
vertex */

while (n > 2) {(a phase 5)}

(output best cut 4)

2. We call our input graph GO0 and our current Graph G. G is of type
UGRAPH(list(node) *,int). Every node of G represents a set of nodes of
G0. This set is stored in a linear list pointed to by G[v]. Every edge e = {v, w}
of G 1epresents a set of edges of GO, namely {{z,y};z € G[v] and y € G[w]}.
The total weight of these edges is stored in GJe].

It is easy to initialize G. We simply make G a copy of GO (except for self-
loops) and initialize G[v] to the appropriate singleton set for every vertex v of

G.

(initialization 2) =
typedef list(node) nodelist;
UGRAPH (nodelist *,int) G;
node v, z;
edge ¢;
node_array (node) partner (G0);
forall_nodes (z, G0O) {
partner[z] = G.new_node (new nodelist);
Glpartner [z]]~append (z);
}
forall_edges (e, G0O)
if (source(e) # target(e))
G.new_edge (partner [source(e)], partner[target(e)], weight[e]);
See also section 3.

This code is used in section 1.

3. We also need to fix a particular node a of G, define n as the number of
nodes of G, and introduce variables to store the currently best cut.
(initialization 2) +=

node a = G.first_node();

int n = G.number_of_nodes();

list(node) best_cut;

int best_value = MAXINT;

int cut_weight;

4. Outputting the best cut is easy.
{output best cut 4) =
return best_cut;

This code is used in section 1.

5. We now come to the heart of the matter, a phase. A phase initializes a set
A to the singleton set {a} and then successively merges all the other nodes of
G into A. In each stage the node v ¢ A which maximizes

w(v, 4) = Z{w(e); e = {v,y} for some y € A}

is merged into A. Let s and ¢ be the last two vertices added to A in a phase.
The cut C computed by the phase is the cut consisting of node ¢ only; in the
graph GO this corresponds to the cut G[t].

Lemma 1 Let s and t be the last two nodes merged tnto A during a phase.
Then {t} is a minimum s-t cut.

Proof:

Let C' be any s-t cut. We show that w(C') > w({t}). Let vy,..., v, be the
order in which the nodes are added to A. Then vy = a,v,_1 = s, and v,, = t.

Call a vertex v = wv; critical if « > 2 and v; and v;_; belong to different
sides of C’'. Note that ¢ is critical. Let k& be the number of critical nodes
and let 4y, 2s,..., iz be the indices of the critical nodes. Then i; = n. For
integer ¢ use A; to denote the set {v1,...,v;}. Then w({t}) = w(vi,, 4s,-1)
and w(C’) > Ele w(v;, Ai;—1 \ Ai;_, 1) since any edge counted on the right
side is also counted on the left and edge costs are non-negative. We now show
for all integer [, 1 <[< k, that

w(vizaAiz—l) < Zw(vijaAij—l \Aij—1—1)'

j=1
For [= 1 we have equality. So assume [> 2. We have

w(vizaAiz—l) = w(viHAiz_1—1)+w(vi17Aiz—1\Ai1—1—1)
< w(wiyy Aipy—1) +Hwlv, Ai—1 \ Ai_-1)
-1
w(vi;, Ag;—1 \ Ag;_ 1) + w(vi, Ag—1 \ Aip_, 1)
1

I
[
1l

MN

S w(vijaA’ij—l\A’ij_l—l)-

1

[
1l

Here the first inequality follows from the fact that v;,_, is added to 4;,_, 1 and
not v;, and the second inequality uses the induction hypothesis.

(a phase 5) =
(determine s and ¢ and the value cut_weight of the cut {t} 6);
if (cut_weight < best_value) {
best_cut = *(G[t]);
best_value = cut_weight;
}
{combine s and ¢ 7);
n-—;

This code is used in section 1.

6. How can we determine the order in which the vertices are merged into A?
This can be done in a manner akin to Prim’s minimum spanning tree algorithm.
We keep the vertices v, v € A, in a priority queue ordered according to w(v, 4).
In each stage we select the node, say u, with maximal w(u, 4) and add it to
A. This increases w(v, A) by w({v, u}) for any vertex v ¢ A and v # u. Since
LEDA priority queues select minimal values we store —w(v, 4) in the queue.
The node added last to A is the vertex ¢. The value cut_weight is w(t, A¢).

(determine s and ¢t and the value cut_weight of the cut {t} 6) =
node t = a;
node s;
node_array (bool) in_PQ(G);
node_pq(int) PQ(G);
forall_nodes (v, G)
if (v#a) {
PQ.insert(v, 0);
// w(v, A) = 0 if there is no edge connecting v to 4
in_PQ[v] = true;

forall_adj_edges (e, a)

PQ.decrease_inf (G.opposite(a, €), PQ.inf (G.opposite(a, €)) — Gle]);
while (-PQ.empty()) {

s=1;

cut-weight = —PQ.inf (PQ.find_-min());

t = PQ.delmin();

in_PQ[t] = false;

forall_adj_edges (e,t) {

if (in_PQ[v = G.opposite(t,e)]) PQ.decrease_inf (v, PQ.inf(v) — Gle]);

}

}

This code is used in section 5.

7. It remains to combine s and ¢. We do so by deleting ¢ from G and moving
all edges incident to ¢ to s. More precisley, we need to do three things:

e Add G[t] to G[s] (G[s]~conc(x(G[t]))).
e Increase G[{s,v}] by G[{t,v}] for all vertices v with {¢,v} € E and v # s.
e Delete ¢ and all its incident edges from G (G.del_node(t)).

The second step rises two difficulties: The edge {s,v} might not exist and
there is no simple way to go from the edge {¢, v} to the edge {s,v}. We overcome
these problems by first recording the edge {s, v} in s_edge[v] for every neighbor

v of s. We then go through the neighbors v of ¢: If v is connected to s then we
simply increase G[{s,v}] by G[{¢,v}], if v is not connected to s and different
from s then we add a new edge {s, v} with weight G[{¢t, v}].

{combine s and ¢t 7) =
G[s]~conc(x(G[t]));
node_array (edge) s_edge(G, nil);
forall_adj_edges (e, s) s_edge[G.opposite(s,e)] = e;
forall_adj_edges (e,t) {
if (s_edge[v = G.opposite(t,e)] = nil) G.new_edge(s, v, Gle]);
else G[s_edge[v]] += Gle];

delete G[t];
G.del_node(t);

This code is used in section 5.

8. The running time of our algorithm is clearly at most n times the running
time of a phase. A phase takes time O(m + nlogn) to merge all nodes into
the set A (the argument is the same as for Prim’s algorithm) and time O(n)
to record the cut computed and to merge s and ¢. The total running time is
therefore O(nm + n?logn).

Table 1 lists the running times (in seconds) for some experiments with ran-
dom graphs on a SPARCstation 10/52. The first column gives the number of
nodes and the first row the number of edges. If there are more than 400 nodes
the running time is about 9nm + 8.5n2log n usec.

References

[SW94] M. Stoer, and F. Wagner. A Simple Min Cut Algorithm.
Algorithms - ESA *94, LNCS 855, 141-147, 1994.

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

100

0.52

0.96

1.31

1.51

1.76

2.03

2.56

3.02

2.75

3.54

200

1.72

2.91

4.01

4.62

5.62

6.43

7.26

7.74

8.58

9.29

300

3.19

5.17

7.13

8.79

10.57

12.37

13.33

14.66

16.62

17.86

400

4.59

8.12

11.31

14.02

16.40

18.82

20.61

22.80

26.04

28.12

500

6.26

11.04

15.43

18.93

22.47

26.05

29.14

32.17

35.79

40.12

600

8.42

14.50

20.09

24.81

29.89

33.75

38.84

42.38

46.71

50.54

700

10.91

18.08

24.19

31.03

36.55

43.24

48.47

53.72

61.18

68.01

800

13.74

22.81

30.92

39.65

46.75

52.78

58.95

64.46

71.39

79.24

900

15.71

25.38

35.80

42.83

52.73

60.99

68.59

76.98

85.08

92.24

1000

18.70

31.75

41.38

50.95

60.13

70.62

79.04

87.96

96.38

107.13

Table 1: Some experimental results

Index

a: 3.

append: 2.
best_cut: 3, 4, 5.
best_value: 3, 5.
conc: 1.
cut_weight: 3, 5, 6.
decrease_inf: 6.
del_min: 6.
del_node: 7.

e: 2.

empty: 6.
false: 6.
find_min: 6.
first_node: 3.
G 2.

Go: 1, 2, 5.
m_PQ: 6.

inf: 6.

insert: 6.
MAXINT: 3.
mintmum_cut: 1.
n: 3.

new_edge: 2, 7.
new_node: 2.
nil: 7.
nodelist: 2.
number_of nodes: 3.
opposite: 6, 7.
partner: 2.

PQ: 6.

s: 6.

s_edge: 7.
source: 2.

t. 6.

target: 2.

true: 6.

v: 2.

w: 1.

weight: 1, 2.

z: 2.

List of Refinements

<a phase 5> Used in section 1.

<combine sandt 7> Used in section 5.

(determine s and ¢ and the value cut_weight of the cut {t} 6) Used in section 5.
<initialization 2, 3> Used in section 1.

(mincut.c 1)

<011tp11t best cut 4> Used in section 1.

