
Algorithmische Geometrie
Voronoi Diagram

Martin Held
FB Computerwissenschaften

Universität Salzburg
A–5020 Salzburg, Austria

May 28, 2008

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back

M. Held: Algorithmische Geometrie (SS 2008) 1

Acknowledgments

These slides are partially based on notes and slides transcribed by various students —
most notably Elias Pschernig, Christian Spielberger, Werner Weiser and Franz
Wilhelmstötter — for previous courses on “Algorithmische Geometrie”. Some figures
were derived from figures originally prepared by students of my lecture
“Wissenschaftliche Arbeitstechniken und Präsentation”. I would like to express my
thankfulness to all of them for their help. This revision and extension was carried out by
myself, and I am responsible for any errors.

I am also happy to acknowledge that we benefited from material published by
colleagues on diverse topics that are partially covered in this lecture. While some of the
material used for this lecture was originally presented in traditional-style publications
(such as textbooks), some other material has its roots in non-standard publication
outlets (such as online documentations, electronic course notes, or user manuals).

Salzburg, January 2008 Martin Held

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back

M. Held: Algorithmische Geometrie (SS 2008) 2

Voronoi Diagram

• Proximity Problems and Lower Bounds,

• Voronoi Diagram: Definition and Basic Facts,

• Voronoi Diagram: Properties,

• Delaunay Triangulation: Definition and Basic Facts,

• Algorithms for Constructing Voronoi Diagrams,

• Generalized Voronoi Diagram,

• Applications of Voronoi Diagrams.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd00100.tex

M. Held: Algorithmische Geometrie (SS 2008) 3

A Set of Proximity Problems

• Consider a set S := {p1, p2, . . . , pn} of n points in E2, i.e., in R2 under the Euclidean
metric.

• CLOSESTPAIR: Determine two points of S whose mutual distance is smallest.

• ALLNEARESTNEIGHBORS: Determine the “nearest neighbor” (point of minimum dis-
tance within S) for each point in S.

• EUCLIDEANMINIMUMSPANNINGTREE (EMST): Construct a tree of minimum total
(Euclidean) length whose vertices are the points of S. (No Steiner points allowed.)

• MAXIMUMEMPTYCIRCLE: Find a circle with largest radius which does not contain a
point of S in its interior and whose center lies within CH(S).

• TRIANGULATION: Join the points in S by non-intersecting straight-line segments so
that every region internal to the convex hull of S is a triangle.

• NEARESTNEIGHBORSEARCH: Given a query point q, which point p ∈ S is a nearest
neighbor of q?

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd00200.tex

M. Held: Algorithmische Geometrie (SS 2008) 4

Lower Bounds

• NEARESTNEIGHBORSEARCH: standard argument yields Ω(logn) comparisons.

• CLOSESTPAIR has an Ω(n logn) lower bound since ELEMENTUNIQUENESS is lin-
early transformable to CLOSESTPAIR.

• ALLNEARESTNEIGHBORS has an Ω(n logn) lower bound since CLOSESTPAIR is lin-
early transformable to ALLNEARESTNEIGHBORS.

• EMST: an EMST contains a closest pair, which establishes the Ω(n logn) lower
bound. (Also, SORTING can be transformed linearly to EMST.)

• MAXIMUMEMPTYCIRCLE in 1D solves MAXGAP, which establishes the Ω(n logn)
lower bound.

• TRIANGULATION has an Ω(n logn) lower bound since CONVEXHULL is linearly trans-
formable to TRIANGULATION. (Also, SORTING can be transformed linearly to TRIAN-
GULATION.)

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd00300.tex

M. Held: Algorithmische Geometrie (SS 2008) 5

Lower Bounds: Summary of Reductions

• We have Ω(n logn) lower bounds due to a variety of reductions.

Element Uniqueness

Sorting

Closest Pair All Nearest Neighbors

EMST

Convex Hull Triangulation

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd00400.tex

M. Held: Algorithmische Geometrie (SS 2008) 6

Voronoi Diagram: Definition and Basic Facts

• If Voronoi diagram is available then proximity problems can be solved in O(n) time!

Element Uniqueness

Sorting

Closest Pair All Nearest Neighbors

EMST

Convex Hull Triangulation

Voronoi Diagram

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd00500.tex

M. Held: Algorithmische Geometrie (SS 2008) 7

Voronoi Diagram: Definition and Basic Facts (cont’d)

• Consider a set S := {p1, · · · , pn} of n distinct points in R2.

• General position assumed: no four points are co-circular!

• Def.: The bisector of two points u,v ∈R2 is the set of points of R2 which are equidis-
tant to u and v:

b(u,v) := {q ∈ R2 : d(u,q) = d(v,q)},

where d(·, ·) denotes the Euclidean distance.

 d
 d

u

v

q

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd00600.tex

M. Held: Algorithmische Geometrie (SS 2008) 8

Voronoi Diagram: Definition and Basic Facts (cont’d)

• Def.: The Voronoi region (VR, aka “Voronoi cell”) of a point pi ∈ S is the locus of
points of R2 whose distance to pi is not greater than the distance to any other point
of S:

V R (pi) := {q ∈ R2 : d(pi,q)≤ d(S\{pi},q)}.

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

V R (pi)

pi

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd00700.tex

M. Held: Algorithmische Geometrie (SS 2008) 9

Voronoi Diagram: Definition and Basic Facts (cont’d)

• Def.: A Voronoi polygon (VP) is defined as

V P (pi) := {q ∈ R2 : d(pi,q) = d(S\{pi},q)}.

• A Voronoi polygon forms the (polygonal) boundary of a Voronoi region.

• The segments of a Voronoi polygon are called Voronoi edges.

• Def.: The Voronoi diagram (VD) of S is defined as

V D(S) :=
[

1≤i≤n

V P (pi).

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd00800.tex

M. Held: Algorithmische Geometrie (SS 2008) 10

Voronoi Diagram: Definition and Basic Facts (cont’d)

V D(S)

The Voronoi diagram V D(S) of the point set S.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd00900.tex

M. Held: Algorithmische Geometrie (SS 2008) 11

Voronoi Diagram: Definition and Basic Facts (cont’d)

• A Voronoi edge always lies on a bisector. Thus, points on a Voronoi edge are equidis-
tant to two points of S.

• Intersections of Voronoi edges are called Voronoi nodes.

p3

v

e2

p2

p1

e3

e1

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd01000.tex

M. Held: Algorithmische Geometrie (SS 2008) 12

Sample Voronoi Diagram

• Input S.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd01100.tex

M. Held: Algorithmische Geometrie (SS 2008) 13

Sample Voronoi Diagram

• Input S, Voronoi region.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd01200.tex

M. Held: Algorithmische Geometrie (SS 2008) 14

Sample Voronoi Diagram

• Input S, Voronoi region, Voronoi diagram.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd01300.tex

M. Held: Algorithmische Geometrie (SS 2008) 15

Sample Voronoi Diagram

• Input S, Voronoi region, Voronoi diagram, Voronoi nodes.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd01400.tex

M. Held: Algorithmische Geometrie (SS 2008) 16

Voronoi Diagram: Definition and Basic Facts (cont’d)

• Lemma: The Voronoi region V R (pi) is the intersection of half-planes defined by
bisectors between pi and the other points of S:

V R (pi) =
\

1≤ j≤n
j 6=i

H(pi, p j),

where H(pi, p j) is the half-space that contains pi.

• Thus, a Voronoi region is a convex polygonal area.

• Lemma: Every point of S has its own Voronoi region that is not empty.

• Lemma: The (topological) interiors of Voronoi regions of distinct points of S are dis-
joint.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd01500.tex

M. Held: Algorithmische Geometrie (SS 2008) 17

Voronoi Diagram: Properties

• Lemma: A Voronoi node is the common intersection of exactly three Voronoi edges.
It is equidistant to the three points of S which lie in the Voronoi regions it belongs to.

• Proof:

? Let a Voronoi node v be the intersection of k edges e1,e2, . . . ,ek, with k≥ 2, which
are ordered clockwise around v. Then e1 is equidistant to some points p1 and p2,
e2 is equidistant to p2 and p3, and so on, and ek is equidistant to pk and p1.

? Thus, v is equidistant to p1, p2, . . . , pk.
? Since a Voronoi region is convex, all points p1, p2, . . . , pk are distinct.
? Based on our assumption that no more than three points are co-circular we con-

clude k ≤ 3.
? However, k = 2 would mean e1 is equidistant to p1 and p2, and e2 is equidistant to

p2 and p1. Therefore, they would lie on the same bisector, and could not intersect
in v.

• This means that a Voronoi Diagram is a 3-regular (planar) graph.

• Note that without the general-position assumption the degree of a Voronoi node can
get as high as n.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd01600.tex

M. Held: Algorithmische Geometrie (SS 2008) 18

Voronoi Diagram: Properties (cont’d)

• Lemma: The circle C centered at a Voronoi node v that passes through the node’s
three equidistant points p1, p2, p3 ∈ S contains no other points of S in its interior.

• Proof:

? Assume that C contains another point p4 ∈ S in its interior.
? Then v would be closer to p4 than to any of p1, p2, p3. Therefore, v would lie in the

Voronoi region of p4.
? This is a contradiction because v lies in the Voronoi regions of p1, p2, p3.

p1

C

p4

p2

v
p3

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd01700.tex

M. Held: Algorithmische Geometrie (SS 2008) 19

Voronoi Diagram: Properties (cont’d)

• Lemma: For pi ∈ S, every nearest neighbor of pi defines an edge of V P (pi).

• Proof:

? Let p j ∈ S be a nearest neighbor of pi, and let v be their midpoint.
? Suppose that v does not lie on the boundary of V P (pi).
? Then the line segment piv would intersect some edge of V P (pi). Assume that

it intersects the bisector of pipk in the point u. Now |piu| < |piv|, and therefore
|pipk| ≤ 2|piu|< 2|piv|= |pip j|, and we would have pk closer to pi than p j, which
is a contradiction.

v u
pi

p j

Bisector of pip j

VP(pi)

Bisector of pipk

pk

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd01800.tex

M. Held: Algorithmische Geometrie (SS 2008) 20

Delaunay Triangulation: Definition and Basic Facts

• Def.: A Delaunay triangulation (DT) of S is a graph that is dual to the Voronoi diagram
of S:

? The nodes of the graph are given by the points of S.
? Two points are connected by a line segment, and form an edge of DT (S), exactly

if they share a Voronoi edge of V D(S).

• Thus, the interior faces of DT (S) are defined by triples of S which correspond to
nodes of V D(S).

• DT (S) does indeed form a triangulation of S. (Proof: See Preparata&Shamos.)

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd01900.tex

M. Held: Algorithmische Geometrie (SS 2008) 21

Delaunay Triangulation: Definition and Basic Facts (cont’d)

DT (S)

Delaunay Triangulation DT (S), with the underlying Voronoi diagram.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd02000.tex

M. Held: Algorithmische Geometrie (SS 2008) 22

Delaunay Triangulation: Definition and Basic Facts (cont’d)

• By definition, every edge of the Delaunay triangulation has a corresponding edge in
the Voronoi diagram.

• DT (S) is called the straight-line dual of V D(S).

• Note: An edge of DT (S) need not intersect its dual Voronoi edge.

• If no four points of a point set are co-circular then its Delaunay triangulation is unique.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd02100.tex

M. Held: Algorithmische Geometrie (SS 2008) 23

Complexity of Voronoi Diagram and Delaunay Triangulation

• Recall that a Delaunay triangulation forms a very special planar graph on n nodes,
to which Euler’s formula

V −E +F = 2

can be applied. This implies that we have

? at least E ≥ F ∗3/2 edges,
? at most F ≤ E ∗2/3 faces.

We conclude that

DT : ≤ 3n−6 edges and thus V D: ≤ 3n−6 edges,
DT : ≤ 2n−4 faces and thus V D: ≤ 2n−5 nodes.

• Note: one Voronoi polygon may have n−1 edges but the entire Voronoi diagram of n
points can have only 3n−6 edges in total. Thus, V D(S) and DT (S) can be stored
in O(n) space!

• Since every edge belongs to two Voronoi polygons, a Voronoi polygon has only six
edges on average.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd02200.tex

M. Held: Algorithmische Geometrie (SS 2008) 24

Proximity Problems Solved by Voronoi Diagrams

• The fact that the Voronoi polygons of nearest neighbors always have a Voronoi edge
in common implies that it is sufficient to check all points in adjacent Voronoi regions
to find a nearest neighbor of a point pi.

• Thus, knowledge of the Voronoi diagram helps to solve CLOSESTPAIR and ALL-
NEARESTNEIGHBORS in O(n) time.

• Lemma: The Voronoi polygon of pi is unbounded if and only if pi is a point of the
convex hull of the set S. (Proof: See Preparata&Shamos.) This means that the
vertices of CH(S) are those points of S which have unbounded Voronoi polygons.

• Thus, knowledge of the Voronoi diagram allows to solve CONVEXHULL in O(n) time.

• A MAXIMUMEMPTYCIRCLE can be found in O(n) time by scanning all nodes of the
Voronoi diagram; see later.

• After O(n logn) preprocessing for building a search data structure of size O(n) on
top of the Voronoi diagram, NEARESTNEIGHBORSEARCH queries can be handled in
O(logn) time.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd02300.tex

M. Held: Algorithmische Geometrie (SS 2008) 25

Reductions Among Proximity Problems

• Lemma: The Voronoi diagram can be obtained in O(n) time from the Delaunay tri-
angulation, and the Delaunay triangulation can be obtained in O(n) time from the
Voronoi diagram.

Element Uniqueness

Sorting

Closest Pair All Nearest Neighbors

EMST

Convex Hull Delaunay Triangulation

Voronoi Diagram

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd02400.tex

M. Held: Algorithmische Geometrie (SS 2008) 26

Algorithms for Constructing Voronoi Diagrams

• Divide&Conquer Algorithm,

• Incremental Construction,

• Sweep-Line Algorithm,

• Construction via Lifting to 3D,

• Approximate Voronoi Diagram by Means of Graphics Hardware.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd02500.tex

M. Held: Algorithmische Geometrie (SS 2008) 27

Divide&Conquer Algorithm

• Preprocessing: sort the points of S by x-coordinates. This takes O(n logn) time.

• Divide-Step:

? Divide S into two subsets S1 and S2 of roughly equal size such that the points in S1

lie to the left and the points in S2 lie to the right of a vertical line.
? This step can be carried out in O(n) time.

• Conquer-Step (aka “Merge”):

? Assume that V D(S1) and V D(S2) are known.
? Clip those parts of V D(S1) that lie to the “right” of a so-called dividing chain.
? Analogously for V D(S2).

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd02600.tex

M. Held: Algorithmische Geometrie (SS 2008) 28

Divide&Conquer Algorithm (cont’d)

• The merge step is carried out by incrementally generating the dividing chain, and by
clipping V D(S1) and V D(S2) appropriately.

S1 S2

V D(S2)
V D(S1)

V D(S)

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd02700.tex

M. Held: Algorithmische Geometrie (SS 2008) 29

Divide&Conquer Algorithm: Merge

• First, find upper and lower
bridges of the convex hull.

? Bisector (ray) defined
by upper bridge of con-
vex hull is part of the di-
viding chain.

? Bisector (ray) defined
by lower bridge of con-
vex hull is part of the di-
viding chain.

V D(S1)
V D(S2)

Convex Hull

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd02800.tex

M. Held: Algorithmische Geometrie (SS 2008) 30

Divide&Conquer Algorithm: Merge (cont’d)

• Build dividing chain
from top to bottom:

? Start by walking
down along the
upper ray.

? Intersect the ray
with V D(S1) and
V D(S2).

? Pick the first in-
tersection as new
Voronoi node.

? The next ray is the
new bisector origi-
nating at this node.

? Continue this jagged
walk until the lower
ray is reached.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd02900.tex

M. Held: Algorithmische Geometrie (SS 2008) 31

Divide&Conquer Algorithm: Complexity Analysis

• The merge can be carried out in O(n) time, based on the Shamos-Hoey scanning
scheme that prevents Voronoi edges from being searched for an intersection for more
than a constant number of times.

• If the merge is carried out in linear time then we get a familiar recurrence relation for
the time T :

T (n) = 2T (
n
2
)+O(n), and thus T (n) = O(n logn).

• We conclude that a divide&conquer algorithm can compute V D(S) in optimal
O(n logn) time.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd03000.tex

M. Held: Algorithmische Geometrie (SS 2008) 32

Incremental Construction

• We compute the Voronoi diagram V D(S) of a set S := {p1, p2, . . . , pn} of n points
by inserting the i-th point pi into V D({p1, p2, . . . , pi−1}), for 1≤ i≤ n.

• If we could achieve constant complexity per insertion then a linear algorithm would
result:
−→ Best case: O(n).

• An insertion could, however, affect all other sites:
−→ Worst case: O(n2), or even worse.

• Since, on average, every Voronoi region is bounded by six Voronoi edges there is
reason to hope that a close-to-linear time complexity can be achieved.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd03100.tex

M. Held: Algorithmische Geometrie (SS 2008) 33

Incremental Construction: Basic Algorithm

1. Nearest-neighbor search among {p1, p2, . . . , pi−1}: Determine 1 ≤ j < i such that
the new point pi lies in V R (p j).

pi

p j

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd03200.tex

M. Held: Algorithmische Geometrie (SS 2008) 34

Incremental Construction: Basic Algorithm (cont’d)

2. Construct the bisector b(pi, p j) between pi and p j, intersect it with V P (p j), and clip
that portion of V P (p j) which is closer to pi than to p j.

pi

p j

pi and p j

Bisector of

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd03300.tex

M. Held: Algorithmische Geometrie (SS 2008) 35

Incremental Construction: Basic Algorithm (cont’d)

3. Generate V P (pi) by a circular scan around pi, similar to the construction of the
dividing chain in the divide&conquer algorithm.

pi

p j

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd03400.tex

M. Held: Algorithmische Geometrie (SS 2008) 36

Incremental Construction: Basic Algorithm (cont’d)

• The scan is finished once it returns to V R (p j). What is the complexity of one
insertion?

pi

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd03500.tex

M. Held: Algorithmische Geometrie (SS 2008) 37

Incremental Construction: Complexity of Nearest-Neighbor Search

• The complexity mainly depends on the complexity of the nearest-neighbor search
and on the number of edges generated/deleted during the scan.

• Nearest-neighbor search by brute force:

? Compute all possible distances.
? Not very practical: O(n) per nearest-neighbor query.

• Nearest-neighbor search akin to “steepest ascent”:

? Guess an initial candidate for p j.
? Compare d(pi, p j) to the distances between pi and the neighbors of p j.
? Select the closest neighbor point as new candidate p j.
? Continue with the new point, until all neighbors have a distance from pi that is

larger than d(pi, p j).
? This approach heavily depends on the availability of a good initial guess.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd03600.tex

M. Held: Algorithmische Geometrie (SS 2008) 38

Incremental Construction: Complexity of Nearest-Neighbor Search
(cont’d)

• Nearest-neighbor search based on geometric hashing:

? Register p1, p2, pi−1 in a uniform grid.
? Locate the grid cell that contains pi, and find nearest neighbor.
? This approach works best for a uniform distribution of the points.

• Nearest-neighbor search based on a history DAG and randomized incremental in-
sertion:

? Assume that the points are inserted in random order.
? One can prove (using backwards analysis): the history DAG has O(n) expected

size, and supports nearest-neighbor queries in O(logn) expected time.
? See the slides on triangulation for more on randomized incremental construction.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd03700.tex

M. Held: Algorithmische Geometrie (SS 2008) 39

Incremental Construction: Complexity of Incremental Merge

• Randomized incremental insertion:

? Again assume that the points are inserted in random order.
? One can prove (using backwards analysis): the update necessary for inserting

one point can be done in O(1) expected time.
? Note: This is independent of the point distribution, as long as the order is random!

• Worst-case insertion order:

? It is fairly easy to pick n points and number them “appropriately” such that the
insertion of the i-th point requires the generation of O(i) Voronoi edges!

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd03800.tex

M. Held: Algorithmische Geometrie (SS 2008) 40

Incremental Construction: Overall Complexity

• Overall cost for computing the Voronoi diagram incrementally: we get O(n logn)
expected time if randomized insertion is used, independent of the distribution of the
points.

• If points are uniformly distributed then geometric hashing tends to answer a nearest-
neighbor query in O(1) time.

• Thus, randomized incremental insertion of n uniformly distributed points can be as-
sumed to generate the Voronoi diagram in linear or slightly super-linear time. (And
this claim is supported by practical experiments.)

• However, the worst case still is O(n2), no matter how efficiently all nearest-neighbor
queries are answered!

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd03900.tex

M. Held: Algorithmische Geometrie (SS 2008) 41

Geometric Hashing for Nearest-Neighbor Searching

• The bounding box of the input points is partitioned into rectangular cells of uniform
size by means of a regular grid.

• For every cell c, all points of {p1, p2, . . . , pi−1} that lie in c are stored with c. (Alter-
natively, only one point is stored per cell.)

• To find the point p j nearest to point pi:

? Determine the cell c that in which pi lies.
? By searching in c (and possibly in its neighboring cells, if c is empty), we find a

first candidate for the nearest neighbor.
? Let δ be the distance from pi to this point.
? We continue searching in c and in those cells around c which are intersected by a

clearance circle with radius δ centered at pi.
? Whenever a point that is closer is found, we update δ appropriately.
? The search stops once no unsearched cell exists that is intersected by the clear-

ance circle.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd04000.tex

M. Held: Algorithmische Geometrie (SS 2008) 42

Geometric Hashing for Nearest-Neighbor Searching (cont’d)

• If all points are stored per cell then the true nearest neighbor is found. If only one
point is stored per cell then this approach yields a (hopefully) good initial candidate
for the nearest neighbor.

• What is a suitable resolution of the grid? There is no universally valid answer. In any
case, the grid should not use more than O(n) memory!

• Personal experience:

? Grids of the form (w ·
√

n)× (h ·
√

n) seem to work nicely, with w ·h = c for some
constant c.

? The parameters w,h are chosen to adapt the resolution of the grid to the aspect
ratio of the bounding box of the points.

? By experiment: 1≤ c≤ 2.

• This basic scheme can be tuned considerably, e.g., by switching to 2D-trees if a small
sample of the points indicates that the points are distributed highly non-uniformly.

• Note: grid-based nearest-neighbor searching will work best for points that are dis-
tributed uniformly, and will fail miserably if all points end up in one cell!

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd04100.tex

M. Held: Algorithmische Geometrie (SS 2008) 43

Sweep-Line Algorithm

• Can a sweep-line algorithm be applied to compute the Voronoi diagram?

• Principal problem: when the sweep line reaches an extreme (e.g., top-most) vertex
of V P (pi), it has not yet moved over pi.

• Thus, the information on the point sites is missing when a Voronoi polygon is first
encountered and Voronoi nodes are to be computed.

• This problem is independent of the sweep direction chosen. Thus, w.l.o.g., we move
the sweep line ` from top to bottom.

• Remarkable idea (by S. Fortune): rather than keeping the actual intersection of the
Voronoi diagram with `, we maintain information on that part of the Voronoi diagram
of the points above ` that is not affected by points below `.

• That part of the Voronoi diagram under construction lies above a beach line consist-
ing of parabolic arcs: each parabolic arc is defined by ` and a point above `.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd04200.tex

M. Held: Algorithmische Geometrie (SS 2008) 44

Sweep-Line Algorithm: Beach Line

• The part of the Voronoi diagram that will not change any more as the sweep line con-
tinues to move downwards lies above the beach line formed by the lower envelope
of parabolic arcs.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd04300.tex

M. Held: Algorithmische Geometrie (SS 2008) 45

Animation of Sweep-Line Algorithm

• The beach line moves downwards as the sweep-line is moved from top to bottom.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd04400.tex

M. Held: Algorithmische Geometrie (SS 2008) 46

Animation of Sweep-Line Algorithm

• The beach line moves downwards as the sweep-line is moved from top to bottom.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd04500.tex

M. Held: Algorithmische Geometrie (SS 2008) 47

Animation of Sweep-Line Algorithm

• The beach line moves downwards as the sweep-line is moved from top to bottom.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd04600.tex

M. Held: Algorithmische Geometrie (SS 2008) 48

Animation of Sweep-Line Algorithm

• The beach line moves downwards as the sweep-line is moved from top to bottom.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd04700.tex

M. Held: Algorithmische Geometrie (SS 2008) 49

Animation of Sweep-Line Algorithm

• The beach line moves downwards as the sweep-line is moved from top to bottom.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd04800.tex

M. Held: Algorithmische Geometrie (SS 2008) 50

Animation of Sweep-Line Algorithm

• The beach line moves downwards as the sweep-line is moved from top to bottom.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd04900.tex

M. Held: Algorithmische Geometrie (SS 2008) 51

Animation of Sweep-Line Algorithm

• The beach line moves downwards as the sweep-line is moved from top to bottom.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd05000.tex

M. Held: Algorithmische Geometrie (SS 2008) 52

Animation of Sweep-Line Algorithm

• The beach line moves downwards as the sweep-line is moved from top to bottom.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd05100.tex

M. Held: Algorithmische Geometrie (SS 2008) 53

Animation of Sweep-Line Algorithm

• The beach line moves downwards as the sweep-line is moved from top to bottom.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd05200.tex

M. Held: Algorithmische Geometrie (SS 2008) 54

Animation of Sweep-Line Algorithm

• The beach line moves downwards as the sweep-line is moved from top to bottom.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd05300.tex

M. Held: Algorithmische Geometrie (SS 2008) 55

Animation of Sweep-Line Algorithm

• The beach line moves downwards as the sweep-line is moved from top to bottom.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd05400.tex

M. Held: Algorithmische Geometrie (SS 2008) 56

Animation of Sweep-Line Algorithm

• A full sweep reveals the complete Voronoi diagram.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd05500.tex

M. Held: Algorithmische Geometrie (SS 2008) 57

Sweep-Line Algorithm: Events

• The following two events need to be considered for the event-point schedule:

1. Site event:
? The sweep line ` passes through an input point, and a new parabolic arc needs

to be inserted into the beach line.
2. Circle event:

? A parabolic arc of the beach line vanishes, i.e., degenerates to a point v, and a
new Voronoi node has to be inserted at v.

? What does this mean for the sweep line `? What is the appropriate y-position of
` to catch this event?

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd05600.tex

M. Held: Algorithmische Geometrie (SS 2008) 58

Sweep-Line Algorithm: Site Event

• If the sweep line ` passes through an input point then a new parabolic arc needs to
be inserted into the beach line. Initially, this arc is degenerate.

• This event occurs whenever the sweep line ` passes through an input point pi.

• It is responsible for the initialization of a new Voronoi region that will become
V R (pi).

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd05700.tex

M. Held: Algorithmische Geometrie (SS 2008) 59

Sweep-Line Algorithm: Circle Event

• If a parabolic arc of the beach line degenerates to a point v then a new Voronoi node
needs to be inserted at v.

• A circle event occurs when the sweep line ` passes over the south pole of a circle
through the three defining input points pi, p j, pk of three consecutive parabolic arcs
of the beach line.

• The center v of such a circle is equidistant to pi, p j, pk and also to `; it becomes a
new node of the Voronoi diagram.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd05800.tex

M. Held: Algorithmische Geometrie (SS 2008) 60

Sweep-Line Algorithm: False Alarms

• Not all scheduled circle events correspond to valid new Voronoi nodes: a circle event
has to be processed only if its defining three parabolic arcs still are consecutive
members of the beach line at the time when the sweep line ` passes over the south
pole of the circle.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd05900.tex

M. Held: Algorithmische Geometrie (SS 2008) 61

Sweep-Line Algorithm: Event-Point Schedule and Sweep-Line
Status

• All input points are stored in sorted order (according to y-coordinates) in the event-
point schedule.

• Whenever three parabolic arcs become consecutive for the first time – when a site
event occurs – the y-coordinate of the corresponding circle event is inserted into the
event-point schedule at the appropriate place.

• Lemma: The beach line is monotone with respect to the x-axis.

• Parabolic arcs have to be inserted into the beach line when processing site events,
and have to be deleted when processing circle events.

• Both structures are best represented as balanced binary search trees, since this
allows logarithmic insertion/deletion.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd06000.tex

M. Held: Algorithmische Geometrie (SS 2008) 62

Sweep-Line Algorithm: Analysis

• Lemma: An arc can appear on the beach line only through a site event.

• Corollary: The beach line is a sequence of at most 2n−1 parabolic arcs.

• Lemma: An arc can disappear from the beach line only through a circle event.

• Theorem: The sweep-line algorithm computes the Voronoi diagram of n points in
O(n logn) time, using O(n) storage.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd06100.tex

M. Held: Algorithmische Geometrie (SS 2008) 63

Construction via Lifting to 3D
• Consider the transformation that maps a

point p = (px, py) to the non-vertical plane
h(p)≡ z = 2pxx+2pyy− (p2

x + p2
y) in R3.

• This plane is tangent to the unit paraboloid
z = x2 + y2 at the point (px, py, p2

x + p2
y).

• Let h+(p) be the half-space defined by
h(p) which contains the unit paraboloid.

• For S := {p1, p2, . . . , pn}, consider the con-
vex polyhedron P := ∩1≤i≤nh+(pi).

• Lemma: The normal projection of the ver-
tices and edges of P onto the xy-plane
yields V D(S).

• Since P can be obtained in O(n logn) time,
we have yet another O(n logn) algorithm
for computing Voronoi diagrams.

x

y

z

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd06200.tex

M. Held: Algorithmische Geometrie (SS 2008) 64

Approximate Voronoi Diagram by Means of Graphics Hardware

• Regard R2 as the xy-plane of R3, and construct upright circular unit cones at every
point of S. (All cones point upwards, are of the same size and form the same angle
with the xy-plane!) Assign a unique color to every cone.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd06300.tex

M. Held: Algorithmische Geometrie (SS 2008) 65

Approximate Voronoi Diagram by Means of Graphics Hardware

• Look at the cones from below the xy-plane, and use normal projection to project
them on the xy-plane. This yields a colored subdivision of the xy-plane, i.e., of R2,
where each cell corresponds to a Voronoi region of a point of S.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd06400.tex

M. Held: Algorithmische Geometrie (SS 2008) 66

Generalized Voronoi Diagram

• We consider a set S of n “sites” (points, straight-line segments, and circular arcs).

• For technical reasons we assume that all end-points of all segments and arcs are
members of S. Furthermore, the segments and arcs are allowed to intersect only at
common end-points. Such a set of sites is called “admissible”.

• Intuitively, the Voronoi diagram of S partitions the Euclidean plane into regions that
are closer to one site than to any other.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd06500.tex

M. Held: Algorithmische Geometrie (SS 2008) 67

Generalized Voronoi Diagram: Cone of Influence

• Technical problem: we need to avoid “two-dimensional” bisectors.

• Def.: The cone of influence, CI(s), of

? a circular arc s is the closure of the cone bounded by the pair of rays originating in
the arc’s center and extending through its endpoints;

? a straight-line segment s is the closure of the strip bounded by the normals through
its endpoints;

? a point s is the entire plane.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd06600.tex

M. Held: Algorithmische Geometrie (SS 2008) 68

Generalized Voronoi Diagram: Definitions

• Consider an admissible set S of n sites, and two sites s1,s2 ∈ S.

• Definitions:

? The bisector b(s1,s2) gives the loci of points that are equidistant to s1 and s2 and
that belong to CI(s1)∩CI(s2).

? The Voronoi region of si is defined as

V R (si) := {q ∈CI(si) : d(si,q)≤ d(S\{si},q)}.

? The (generalized) Voronoi polygon of si is defined as

V P (si) := {q ∈CI(si) : d(si,q) = d(S\{si},q)}.

? The (generalized) Voronoi diagram of S is defined as

V D(S) :=
[

1≤i≤n

V P (si).

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd06700.tex

M. Held: Algorithmische Geometrie (SS 2008) 69

Generalized Voronoi Diagram: Bisectors

• Lemma: V D(S) is a planar graph and consists of O(n) parabolic, hyperbolic, elliptic
and straight-line bisectors.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd06800.tex

M. Held: Algorithmische Geometrie (SS 2008) 70

Generalized Voronoi Diagram: Bisectors (cont’d)

• Lemma: V D(S) is a planar graph and consists of O(n) parabolic, hyperbolic, elliptic
and straight-line bisectors.

 r

 d

 d r

 r

 r

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd06900.tex

M. Held: Algorithmische Geometrie (SS 2008) 71

Generalized Voronoi Diagram: Algorithms

• Several O(n logn) expected-time algorithms for polygons and/or line segments.

• Sweep-line algorithm (for points and line segments): O(n logn) worst-case time [For-
tune 1987].

• Divide&conquer algorithm: O(n logn) worst-case time [Yap 1987].

• Randomized incremental construction: O(n logn) expected time [Held&Huber 2008].

• Note: the Voronoi diagram of a (convex) polygon can be constructed in linear time
[Aggarwal et al. 1989, Chin et al. 1999]!

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd07000.tex

M. Held: Algorithmische Geometrie (SS 2008) 72

Generalized Voronoi Diagram: Randomized Incremental
Construction

• How can we construct the (generalized) Voronoi diagram of the green sites?

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd07100.tex

M. Held: Algorithmische Geometrie (SS 2008) 73

Generalized Voronoi Diagram: Randomized Incremental
Construction

• Start with the vertices of S.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd07200.tex

M. Held: Algorithmische Geometrie (SS 2008) 74

Generalized Voronoi Diagram: Randomized Incremental
Construction

• Start with the vertices of S, and compute their Voronoi diagram.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd07300.tex

M. Held: Algorithmische Geometrie (SS 2008) 75

Generalized Voronoi Diagram: Randomized Incremental
Construction

• Start with the vertices of S, and compute their Voronoi diagram. Insert segments.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd07400.tex

M. Held: Algorithmische Geometrie (SS 2008) 76

Generalized Voronoi Diagram: Randomized Incremental
Construction

• Start with the vertices of S, and compute their Voronoi diagram. Insert segments,
randomly.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd07500.tex

M. Held: Algorithmische Geometrie (SS 2008) 77

Generalized Voronoi Diagram: Randomized Incremental
Construction

• Start with the vertices of S, and compute their Voronoi diagram. Insert segments,
randomly, one after the other.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd07600.tex

M. Held: Algorithmische Geometrie (SS 2008) 78

Generalized Voronoi Diagram: Randomized Incremental
Construction

• Start with the vertices of S, and compute their Voronoi diagram. Insert segments,
randomly, one after the other. Same for the arcs.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd07700.tex

M. Held: Algorithmische Geometrie (SS 2008) 79

Generalized Voronoi Diagram: Medial Axis

• The medial axis is a subset of the Voronoi diagram; it contains only those points on
the Voronoi diagram which have at least two disjoint footprints on the boundary.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd07800.tex

M. Held: Algorithmische Geometrie (SS 2008) 80

Generalized Voronoi Diagram: Parameterization of Voronoi Edges

• We assign a clearance-based parameterization f : [a,b] → R2 to every edge e,
where a is the minimum and b is the maximum clearance of points of e.

• The coordinates of a point p of e with clearance t are obtained by evaluating f : we
have p = f (t).

a

b
t

t

u

v

p

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd07900.tex

M. Held: Algorithmische Geometrie (SS 2008) 81

Applications of Voronoi Diagrams

• We do already know that the availability of the Voronoi diagram allows us to solve
the following problems in O(n) time:

? CLOSESTPAIR,
? ALLNEARESTNEIGHBORS,
? TRIANGULATION.

• In the sequel, we will study

? Statistical classification and shape estimation,
? EUCLIDEANMINIMUMSPANNINGTREE (EMST),
? approximate EUCLIDEANTRAVELINGSALESMANTOUR (ETST),
? MAXIMUMEMPTYCIRCLE,
? OFFSETTING,
? FINDING A GOUGE-FREE PATH.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd08000.tex

M. Held: Algorithmische Geometrie (SS 2008) 82

Statistical Classification and Shape Estimation

• Given are sets of differently colored points in the plane. What is a suitable partition
of the plane according to the colors of the points?

• We can compute the Voronoi diagram and color every Voronoi cell with its point’s
color.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd08100.tex

M. Held: Algorithmische Geometrie (SS 2008) 83

Euclidean Minimum Spanning Tree

• Consider a set S := {p1, p2, . . . , pn} ⊂ R2, and assume that we want to compute a
Euclidean minimum spanning tree of S.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd08200.tex

M. Held: Algorithmische Geometrie (SS 2008) 84

Euclidean Minimum Spanning Tree (cont’d)

• Obviously, we could apply standard techniques of graph theory by computing an
EMST on the graph G := (V,E), where V := S and E := S× S, and where the
Euclidean length of an edge is taken as its weight.

• Lemma [Prim]: Assume that G is connected, and let V1,V2 be a partition of V . There
is a minimum spanning tree of G which contains the shortest of the edges with one
terminal in V1 and the other in V2.

• Prim’s algorithm starts with a small tree T and grows it until it contains all nodes
of G . Initially, T contains just one arbitrary node of V . At each stage one node
not yet in T but closest to (a node of) T is added to T . Prim’s algorithm can be
implemented to run in O(|V |2) time.

• Kruskal’s algorithm begins with a spanning forest, where each forest is initialized
with one node of V . It repeatedly joins two trees together by picking the shortest
edge between them until a spanning tree of the entire graph is obtained. Kruskal’s
algorithm can be implemented to run in O(|E| log |E|) time.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd08300.tex

M. Held: Algorithmische Geometrie (SS 2008) 85

Euclidean Minimum Spanning Tree (cont’d)

• Can we do any better than O(n2) when computing EMSTs?

• Lemma: DT (S) contains an EMST of S as sub-graph.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd08400.tex

M. Held: Algorithmische Geometrie (SS 2008) 86

Euclidean Minimum Spanning Tree (cont’d)

• Thus, there is no need to consider the full graph on S.

• Rather, we can apply Kruskal’s algorithm to DT (S), and obtain an O(n logn) algo-
rithm for computing EMSTs.

• Lemma: An EMST of S can be computed from the Delaunay triangulation of S in time
O(n).

• Proof: Observe that DT (S) is a planar graph, and use Cheriton and Tarjan’s “clean-
up refinement” of Kruskal’s algorithm.

• Note: an EMST is unique if all inter-point distances on S are distinct.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd08500.tex

M. Held: Algorithmische Geometrie (SS 2008) 87

Approximate Traveling Salesman Tour

• The EUCLIDEANTRAVELINGSALESMANPROBLEM (ETSP) asks to compute a shortest
closed path on S ⊂ E2 that visits all points of S.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd08600.tex

M. Held: Algorithmische Geometrie (SS 2008) 88

Approximate Traveling Salesman Tour

• Theorem: TSP and ETSP are N P -hard.

• Let OPT be the true length of a TSP tour, and let APX be the length of an approximate
solution.

• Def.: An approximation algorithm provides a constant-factor approximation if a con-
stant c ∈ R+ exists such that APX≤ c ·OPT holds for all inputs.

• Constant-factor approximations to ETSP:

? Doubling-the-EMST heuristic: c = 2; runs in O(n logn) time.
? Christofides’ heuristic: c = 3/2; runs in O(n3) time.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd08700.tex

M. Held: Algorithmische Geometrie (SS 2008) 89

Approximate Traveling Salesman Tour (cont’d)

• Note that the Euclidean metric obeys the triangle inequality.

• Recent polynomial-time approximation schemes (PTAS):

? Arora (1996), Mitchell (1996), Rao and Smith (1998).
? c = 1+ ε (for ε ∈ R+).
? Common to these algorithms is the fact that O(1/ε) appears as exponent of n or

logn.

• Hardness of approximation for non-Euclidean TSPs with symmetric metric:

? Papadimitriou and Vempala (2000): No polynomial-time constant-factor approxi-
mation algorithm which achieves c≤ (1+1/219) exists, unless P = N P .

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd08800.tex

M. Held: Algorithmische Geometrie (SS 2008) 90

Approximate TST: Doubling-the-EMST Heuristic

• Compute the Euclidean minimum spanning tree T (S) of S.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd08900.tex

M. Held: Algorithmische Geometrie (SS 2008) 91

Approximate TST: Doubling-the-EMST Heuristic (cont’d)

• Select an arbitrary node v of T (S) as root.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd09000.tex

M. Held: Algorithmische Geometrie (SS 2008) 92

Approximate TST: Doubling-the-EMST Heuristic (cont’d)

• Compute an in-order traversal of T (S) rooted at v to obtain a tour C (S).

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd09100.tex

M. Held: Algorithmische Geometrie (SS 2008) 93

Approximate TST: Doubling-the-EMST Heuristic (cont’d)

• By-pass points already visited, thus shortening C (S).

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd09200.tex

M. Held: Algorithmische Geometrie (SS 2008) 94

Approximate TST: Doubling-the-EMST Heuristic (cont’d)

• Apply 2-opt moves (at additional computational cost).

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd09300.tex

M. Held: Algorithmische Geometrie (SS 2008) 95

Approximate TST: Doubling-the-EMST Heuristic (cont’d)

• Time complexity: O(n logn) for computing the EMST T (S).

• Factor of approximation: c = 2.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd09400.tex

M. Held: Algorithmische Geometrie (SS 2008) 96

Approximate TST: Christofides’ Heuristic

• Compute the Euclidean minimum spanning tree T (S) of S.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd09500.tex

M. Held: Algorithmische Geometrie (SS 2008) 97

Approximate TST: Christofides’ Heuristic

• Compute a minimum Euclidean matching M on the vertices of odd degree in T (S).

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd09600.tex

M. Held: Algorithmische Geometrie (SS 2008) 98

Approximate TST: Christofides’ Heuristic (cont’d)

• Compute an Eulerian tour C on T ∪M .

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd09700.tex

M. Held: Algorithmische Geometrie (SS 2008) 99

Approximate TST: Christofides’ Heuristic (cont’d)

• By-pass points already visited, thus shortening C .

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd09800.tex

M. Held: Algorithmische Geometrie (SS 2008) 100

Approximate TST: Christofides’ Heuristic (cont’d)

• Apply 2-opt moves (at additional computational cost).

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd09900.tex

M. Held: Algorithmische Geometrie (SS 2008) 101

Approximate TST: Christofides’ Heuristic (cont’d)

• Time complexity: O(n3) for computing the Euclidean matching.

• Factor of approximation: c = 3
2.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd10000.tex

M. Held: Algorithmische Geometrie (SS 2008) 102

Maximum Empty Circle

• Restrict V D(S) to CH(S).

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd10100.tex

M. Held: Algorithmische Geometrie (SS 2008) 103

Maximum Empty Circle (cont’d)

• Determine the largest circle centered at an intersection of V D(S) and CH(S).

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd10200.tex

M. Held: Algorithmische Geometrie (SS 2008) 104

Maximum Empty Circle (cont’d)

• Determine the largest circle centered at an interior node of V D(S).

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd10300.tex

M. Held: Algorithmische Geometrie (SS 2008) 105

Maximum Empty Circle (cont’d)

• Pick the largest circle among those two categories of circles.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd10400.tex

M. Held: Algorithmische Geometrie (SS 2008) 106

Maximum Inscribed Circle

• Similarly, scanning the Voronoi nodes interior to a polygon yields a maximum in-
scribed circle in O(n) time.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd10500.tex

M. Held: Algorithmische Geometrie (SS 2008) 107

Offsetting: Minkowski Sum and Difference

• Let A,B be sets, and a,b denote points of A respectively B.

• We define the translation of A by the vector b as

Ab := {a+b : a ∈ A}.

• The Minkowski sum of A and B is defined as

A⊕B :=
[
b∈B

Ab.

• The Minkowski difference of A and B is defined as

A	B :=
\
b∈B

A−b.

• Note: In general, (A⊕B)	B 6= A.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd10600.tex

M. Held: Algorithmische Geometrie (SS 2008) 108

Offsetting: Sample Minkowski Sum

• Let A be a curve, and B be a circular disk centered at the origin. What is A⊕B?

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd10700.tex

M. Held: Algorithmische Geometrie (SS 2008) 109

Offsetting: Sample Minkowski Difference

• Let A be a polygon, and B be a circular disk centered at the origin. What is A	B?

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd10800.tex

M. Held: Algorithmische Geometrie (SS 2008) 110

Offsetting: Topological Changes

• Minkowski sums and differences of an area A with a circular disk B centered at the
origin are also called offsets (in CAD/CAM) and buffers (in GIS).

• Note: the boundary of an offset may contain circular arcs even if the input is purely
polygonal.

• Note: offsetting may cause topological changes!

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd10900.tex

M. Held: Algorithmische Geometrie (SS 2008) 111

Computation of Offset Patterns

• How can we compute offset patterns reliably and efficiently?

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd11000.tex

M. Held: Algorithmische Geometrie (SS 2008) 112

Conventional Offsetting

• How can we compute even just one individual offset?

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd11100.tex

M. Held: Algorithmische Geometrie (SS 2008) 113

Conventional Offsetting (cont’d)

• First, we compute offset segments (resp. arcs) for every input segment (resp. arc).

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd11200.tex

M. Held: Algorithmische Geometrie (SS 2008) 114

Conventional Offsetting (cont’d)

• In order to get one closed loop, we insert trimming arcs.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd11300.tex

M. Held: Algorithmische Geometrie (SS 2008) 115

Conventional Offsetting (cont’d)

• Next, all self-intersections are determined.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd11400.tex

M. Held: Algorithmische Geometrie (SS 2008) 116

Conventional Offsetting (cont’d)

• Finally, all incorrect loops of the offset are removed.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd11500.tex

M. Held: Algorithmische Geometrie (SS 2008) 117

Voronoi-Based Offsetting

• We start with analyzing the positions of the end-points of the offset segments.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd11600.tex

M. Held: Algorithmische Geometrie (SS 2008) 118

Voronoi-Based Offsetting (cont’d)

• This looks familiar!

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd11700.tex

M. Held: Algorithmische Geometrie (SS 2008) 119

Voronoi-Based Offsetting (cont’d)

• Indeed, all end-points of offset segments lie on the Voronoi diagram!

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd11800.tex

M. Held: Algorithmische Geometrie (SS 2008) 120

Voronoi-Based Offsetting (cont’d)

• Thus, a linear-time scan of the Voronoi diagram reveals the end-points of one offset.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd11900.tex

M. Held: Algorithmische Geometrie (SS 2008) 121

Voronoi-Based Offsetting (cont’d)

• Details of the scan to determine one offset.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd12000.tex

M. Held: Algorithmische Geometrie (SS 2008) 122

Finding a Gouge-Free Path

• Can we move the disk within the polygon from the blue to the red position?

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd12100.tex

M. Held: Algorithmische Geometrie (SS 2008) 123

Finding a Gouge-Free Path (cont’d)

• Retraction method: project red and blue centers onto the Voronoi diagram.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd12200.tex

M. Held: Algorithmische Geometrie (SS 2008) 124

Finding a Gouge-Free Path (cont’d)

• Scan the Voronoi diagram to find a way from blue to red.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd12300.tex

M. Held: Algorithmische Geometrie (SS 2008) 125

Finding a Gouge-Free Path (cont’d)

• Make sure to check the clearance while moving through a bottleneck.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd12400.tex

M. Held: Algorithmische Geometrie (SS 2008) 126

Finding a Gouge-Free Path (cont’d)

• Indeed, this disk can be moved from blue to red!

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd12500.tex

M. Held: Algorithmische Geometrie (SS 2008) 127

Bottlenecks and Locally Inner-Most Points

• A linear-time scan of the VD reveals all bottlenecks and locally inner-most points.

Quit Full Screen Previous Page Next Page GoTo Page Go Forward Go Back vd12600.tex

