
3.
The microarchitecture of Intel and AMD

CPU's
An optimization guide for assembly programmers and

compiler makers

By Agner Fog. Copenhagen University College of Engineering.
Copyright © 1996 - 2008. Last updated 2008-08-24.

Contents
1 Introduction ... 3

1.1 About this manual ... 3
1.2 Microprocessor versions covered by this manual.. 4

2 Out-of-order execution (All processors except P1, PMMX).. 6
2.1 Instructions are split into µops... 6
2.2 Register renaming .. 7

3 Branch prediction (all processors) ... 9
3.1 Prediction methods for conditional jumps.. 9
3.2 Branch prediction in P1... 14
3.3 Branch prediction in PMMX, PPro, P2, and P3 ... 18
3.4 Branch prediction in P4 and P4E .. 19
3.5 Branch prediction in PM and Core2 .. 22
3.6 Branch prediction in AMD ... 24
3.7 Indirect jumps on older processors ... 27
3.8 Returns (all processors except P1) ... 27
3.9 Static prediction .. 27
3.10 Close jumps.. 28

4 Pentium 1 and Pentium MMX pipeline... 30
4.1 Pairing integer instructions.. 30
4.2 Address generation interlock... 34
4.3 Splitting complex instructions into simpler ones .. 34
4.4 Prefixes... 35
4.5 Scheduling floating point code .. 36

5 Pentium Pro, II and III pipeline... 39
5.1 The pipeline in PPro, P2 and P3 ... 39
5.2 Instruction fetch .. 39
5.3 Instruction decoding.. 40
5.4 Register renaming .. 44
5.5 ROB read.. 44
5.6 Out of order execution .. 48
5.7 Retirement .. 49
5.8 Partial register stalls.. 50
5.9 Store forwarding stalls .. 53
5.10 Bottlenecks in PPro, P2, P3 .. 54

6 Pentium M pipeline.. 56
6.1 The pipeline in PM .. 56
6.2 The pipeline in Core Solo and Duo ... 57
6.3 Instruction fetch .. 57
6.4 Instruction decoding.. 57
6.5 Loop buffer ... 59
6.6 Micro-op fusion ... 59
6.7 Stack engine... 61
6.8 Register renaming .. 63
6.9 Register read stalls ... 63

 2

6.10 Execution units ... 65
6.11 Execution units that are connected to both port 0 and 1.. 65
6.12 Retirement .. 67
6.13 Partial register access... 67
6.14 Store forwarding stalls .. 69
6.15 Bottlenecks in PM ... 69

7 Core 2 pipeline .. 72
7.1 Pipeline... 72
7.2 Instruction fetch and predecoding ... 72
7.3 Instruction decoding.. 74
7.4 Micro-op fusion ... 75
7.5 Macro-op fusion .. 76
7.6 Stack engine... 77
7.7 Register renaming .. 77
7.8 Register read stalls ... 78
7.9 Execution units ... 79
7.10 Retirement .. 82
7.11 Partial register access... 82
7.12 Store forwarding stalls .. 83
7.13 Cache and memory access... 84
7.14 Breaking dependence chains.. 85
7.15 Bottlenecks in Core2... 85

8 Pentium 4 (NetBurst) pipeline.. 88
8.1 Data cache ... 88
8.2 Trace cache.. 88
8.3 Instruction decoding.. 93
8.4 Execution units ... 94
8.5 Do the floating point and MMX units run at half speed? .. 96
8.6 Transfer of data between execution units.. 99
8.7 Retirement .. 101
8.8 Partial registers and partial flags... 102
8.9 Store forwarding stalls .. 103
8.10 Memory intermediates in dependence chains ... 103
8.11 Breaking dependence chains.. 105
8.12 Choosing the optimal instructions ... 105
8.13 Bottlenecks in P4 and P4E.. 108

9 AMD pipeline... 111
9.1 The pipeline in AMD processors ... 111
9.2 Instruction fetch .. 113
9.3 Predecoding and instruction length decoding.. 113
9.4 Single, double and vector path instructions... 114
9.5 Stack engine... 115
9.6 Integer execution pipes... 115
9.7 Floating point execution pipes... 115
9.8 Mixing instructions with different latency ... 117
9.9 64 bit versus 128 bit instructions... 118
9.10 Data delay between differently typed instructions ... 119
9.11 Partial register access... 119
9.12 Partial flag access... 120
9.13 Store forwarding stalls .. 120
9.14 Loops.. 121
9.15 Cache ... 121
9.16 Bottlenecks in AMD... 123

10 Comparison of microarchitectures ... 125
10.1 The AMD kernel.. 125
10.2 The Pentium 4 kernel.. 126
10.3 The Pentium M kernel... 128
10.4 Intel Core 2 microarchitecture ... 128

 3

10.5 Conclusion.. 129
10.6 Future trends .. 131

11 Literature... 133

1 Introduction

1.1 About this manual
This is the third in a series of five manuals:

1. Optimizing software in C++: An optimization guide for Windows, Linux and Mac
platforms.

2. Optimizing subroutines in assembly language: An optimization guide for x86
platforms.

3. The microarchitecture of Intel and AMD CPU's: An optimization guide for assembly
programmers and compiler makers.

4. Instruction tables: Lists of instruction latencies, throughputs and micro-operation
breakdowns for Intel and AMD CPU's.

5. Calling conventions for different C++ compilers and operating systems.

The latest versions of these manuals are always available from www.agner.org/optimize.
Copyright conditions are listed in manual 5.

The present manual describes the details of the microarchitectures of x86 microprocessors
from Intel and AMD. The Itanium processor is not covered. The purpose of this manual is to
enable assembly programmers and compiler makers to optimize software for a specific
microprocessor. The main focus is on details that are relevant to calculations of how much
time a piece of code takes to execute, such as the latencies of different execution units and
the throughputs of various parts of the pipelines. Branch prediction algorithms are also
covered in detail.

This manual will also be interesting to students of microarchitecture. But it must be noted
that the technical descriptions are mostly based on my own research, which is limited to
what is measurable. The descriptions of the "mechanics" of the pipelines are therefore
limited to what can be measured by counting clock cycles or micro-operations (µops) and
what can be deduced from these measurements. Mechanistic explanations in this manual
should be regarded as a model which is useful for predicting microprocessor behavior. I
have no way of knowing with certainty whether it is in accordance with the actual physical
structure of the microprocessors. The main purpose of providing this information is to
enable programmers and compiler makers to optimize their code.

On the other hand, my method of deducing information from measurements rather than
relying on information published by microprocessor vendors provides a lot of new informa-
tion that cannot be found anywhere else. Technical details published by microprocessor
vendors is often superficial, incomplete, selective and sometimes misleading.

My findings are sometimes in disagreement with data published by microprocessor vendors.
Reasons for this discrepancy might be that such data are theoretical while my data are
obtained experimentally under a particular set of testing conditions. I do not claim that all
information in this manual is exact. Some timings etc. can be difficult or impossible to

http://www.agner.org/optimize

 4

measure exactly, and I do not have access to the inside information on technical
implementations that microprocessor vendors base their technical manuals on.

I have done tests in various processor modes: unprotected and protected, 16-bit, 32-bit and
64-bit. Most timing results are independent of the processor mode. Important differences
are noted where appropriate. Far jumps, far calls and interrupts have mostly been tested in
16-bit mode. Call gates etc. have not been tested. The detailed timing results are listed in
manual 4: "Instruction tables".

Most of the information in this manual is based on my own research. Many people have
sent me useful information and corrections, which I am very thankful for. I keep updating the
manual whenever I have new important information. This manual is therefore more detailed,
comprehensive and exact than other sources of information; and it contains many details
not found anywhere else.

This manual is not for beginners. It is assumed that the reader has a good understanding of
assembly programming and microprocessor architecture. If not, then please read some
books on the subject and get some programming experience before you begin doing
complicated optimizations. See the literature list in manual 2: "Optimizing subroutines in
assembly language" or follow the links from www.agner.org/optimize.

The reader may skip chapters describing old microprocessor designs unless you are using
these processors in embedded systems or you are interested in historical developments in
microarchitecture.

Please don't send your programming questions to me, I am not gonna do your homework
for you! There are various discussion forums on the Internet where you can get answers to
your programming questions if you cannot find the answers in the relevant books and
manuals.

1.2 Microprocessor versions covered by this manual
The following families of x86 microprocessors are discussed in this manual:

Microprocessor name Abbreviation
Intel Pentium (without name suffix) P1
Intel Pentium MMX PMMX
Intel Pentium Pro PPro
Intel Pentium II P2
Intel Pentium III P3
Intel Pentium 4 (NetBurst) P4
Intel Pentium 4 with EM64T, Pentium D, etc. P4E
Intel Pentium M, Core Solo, Core Duo PM
Intel Core 2 Core2
AMD Athlon AMD K7
AMD Athlon 64, Opteron, etc., 64-bit AMD K8
AMD Family 10h, Phenom, third generation Opteron AMD K10
Table 1.1. Microprocessor families

The abbreviations here are intended to distinguish between different kernel microarchitec-
tures, regardless of trade names. The commercial names of microprocessors often blur the
distinctions between different kernel technologies. The name Celeron applies to P2, P3, P4
or PM with less cache than the standard versions. The name Xeon applies to P2, P3, P4 or
Core2 with more cache than the standard versions. The names Pentium D and Pentium
Extreme Edition refer to P4E with multiple cores. The name Centrino applies to Pentium M,

http://www.agner.org/optimize/

 5

Core Solo and Core Duo processors. Core Solo is rather similar to Pentium M. Core Duo is
similar too, but with two cores.

The name Sempron applies to a low-end version of Athlon 64 with less cache. Turion 64 is
a mobile version. Opteron is a server version with more cache. Some versions of P4E, PM,
Core2 and AMD processors have multiple cores.

The P1 and PMMX processors represent the fifth generation in the Intel x86 series of
microprocessors, and their processor kernels are very similar. PPro, P2 and P3 all have the
sixth generation kernel. These three processors are almost identical except for the fact that
new instructions are added to each new model. P4 is the first processor in the seventh
generation which, for obscure reasons, is not called seventh generation in Intel documents.
Quite unexpectedly, the generation number returned by the CPUID instruction in the P4 is
not 7 but 15. The confusion is complete when the subsequent Intel CPU's: Pentium M,
Core, and Core2 report generation number 6.

The reader should be aware that different generations of microprocessors behave very
differently. Also, the Intel and AMD microarchitectures are very different. What is optimal for
one generation or one brand may not be optimal for the others.

 6

2 Out-of-order execution (All processors except P1,
PMMX)

The sixth generation of microprocessors, beginning with the PPro, provided an important
improvement in microarchitecture design, namely out-of-order execution. The idea is that if
the execution of a particular instruction is delayed because the input data for the instruction
are not available yet, then the microprocessor will try to find later instructions that it can do
first, if the input data for the latter instructions are ready. Obviously, the microprocessor has
to check if the latter instructions need the output from the former instruction. If each
instruction depends on the result of the preceding instruction, then we have no opportunities
for out-of-order execution. This is called a dependence chain. Manual 2: "Optimizing
subroutines in assembly language" gives examples of how to avoid long dependence
chains.

The logic for determining input dependences and the mechanisms for doing instructions as
soon as the necessary inputs are ready, gives us the further advantage that the
microprocessor can do several things at the same time. If we need to do an addition and a
multiplication, and neither instruction depends on the output of the other, then we can do
both at the same time, because they are using two different execution units. But we cannot
do two multiplications at the same time if we have only one multiplication unit.

Typically, everything in these microprocessors is highly pipelined in order to improve the
throughput. If, for example, a floating point addition takes 4 clock cycles, and the execution
unit is fully pipelined, then we can start one addition at time T, which will be finished at time
T+4, and start another addition at time T+1, which will be finished at time T+5. The
advantage of this technology is therefore highest if the code can be organized so that there
are as few dependences as possible between successive instructions.

2.1 Instructions are split into µops
The microprocessors with out-of-order execution are translating all instructions into micro-
operations - abbreviated µops or uops. A simple instruction such as ADD EAX,EBX
generates only one µop, while an instruction like ADD EAX,[MEM1] may generate two: one
for reading from memory into a temporary (unnamed) register, and one for adding the
contents of the temporary register to EAX. The instruction ADD [MEM1],EAX may
generate three µops: one for reading from memory, one for adding, and one for writing the
result back to memory. The advantage of this is that the µops can be executed out of order.
Example:

; Example 2.1. Out of order processing
mov eax, [mem1]
imul eax, 5
add eax, [mem2]
mov [mem3], eax

Here, the ADD EAX,[MEM2] instruction is split into two µops. The advantage of this is that
the microprocessor can fetch the value of [MEM2] at the same time as it is doing the
multiplication. If none of the data are in the cache, then the microprocessor will start to fetch
[MEM2] immediately after starting to fetch [MEM1], and long before the multiplication can
start. The splitting into µops also makes the stack work more efficiently. Consider the
sequence:

; Example 2.2. Instructions split into µops
push eax
call func

 7

The PUSH EAX instruction is split into two µops which can be represented as SUB ESP,4
and MOV [ESP],EAX. The advantage of this is that the SUB ESP,4 µop can be executed
even if the value of EAX is not ready yet. The CALL operation needs the new value of ESP,
so the CALL would have to wait for the value of EAX if the PUSH instruction was not split into
µops. Thanks to the use of µops, the value of the stack pointer almost never causes delays
in normal programs.

2.2 Register renaming
Consider the example:

; Example 2.3. Register renaming
mov eax, [mem1]
imul eax, 6
mov [mem2], eax
mov eax, [mem3]
add eax, 2
mov [mem4], eax

This piece of code is doing two things that have nothing to do with each other: multiplying
[MEM1] by 6 and adding 2 to [MEM3]. If we were using a different register in the last three
instructions, then the independence would be obvious. And, in fact, the microprocessor is
actually smart enough to do just that. It is using a different temporary register in the last
three instructions so that it can do the multiplication and the addition in parallel. The IA32
instruction set gives us only seven general-purpose 32-bit registers, and often we are using
them all. So we cannot afford the luxury of using a new register for every calculation. But
the microprocessor has plenty of temporal registers to use. The microprocessor can rename
any of these temporary registers to represent a logical register such as EAX.

Register renaming works fully automatically and in a very simple way. Every time an
instruction writes to or modifies a logical register, the microprocessor assigns a new
temporary register to that logical register. The first instruction in the above example will
assign one temporary register to EAX. The second instruction is putting a new value into
EAX, so a new temporary register will be assigned here. In other words, the multiplication
instruction will use two different registers, one for input and another one for output. The next
example illustrates the advantage of this:

; Example 2.4. Register renaming
mov eax, [mem1]
mov ebx, [mem2]
add ebx, eax
imul eax, 6
mov [mem3], eax
mov [mem4], ebx

Assume, now, that [MEM1] is in the cache, while [MEM2] is not. This means that the
multiplication can start before the addition. The advantage of using a new temporary
register for the result of the multiplication is that we still have the old value of EAX, which
has to be kept until EBX is ready for the addition. If we had used the same register for the
input and output of the multiplication, then the multiplication would have to wait until the
loading of EBX and the addition was finished.

After all the operations are finished, the value in the temporary register that represents the
last value of EAX in the code sequence is written to a permanent EAX register. This process
is called retirement (see page 49 and 101).

All general purpose registers, stack pointer, flags, floating point registers, MMX registers,
XMM registers and possibly segment registers can be renamed. Many processors do not

 8

allow the control words, and the floating point status word to be renamed, and this is the
reason why code that modifies these registers is slow.

 9

3 Branch prediction (all processors)
The pipeline in a modern microprocessor contains many stages, including instruction fetch,
decoding, register allocation and renaming, µop reordering, execution, and retirement.
Handling instructions in a pipelined manner allows the microprocessor to do many things at
the same time. While one instruction is being executed, the next instructions are being
fetched and decoded. The biggest problem with pipelining is branches in the code. For
example, a conditional jump allows the instruction flow to go in any of two directions. If there
is only one pipeline, then the microprocessor doesn't know which of the two branches to
feed into the pipeline until the branch instruction has been executed. The longer the
pipeline, the more time does the microprocessor waste if it has fed the wrong branch into
the pipeline.

As the pipelines become longer and longer in every new microprocessor generation, the
problem of branch misprediction becomes so big that the microprocessor designers go to
great lengths to reduce it. The designers are inventing more and more sophisticated
mechanisms for predicting which way a branch will go, in order to minimize the frequency of
branch mispredictions. The history of branch behavior is stored in order to use past history
for predicting future behavior. This prediction has two aspects: predicting whether a
conditional jump will be taken or not, and predicting the target address that it jumps to. A
cache called Branch Target Buffer (BTB) stores the target address of all jumps. The first
time an unconditional jump is executed, the target address is stored in the BTB. The second
time the same jump is executed, the target address in the BTB is used for fetching the
predicted target into the pipeline, even though the true target is not calculated until the jump
reaches the execution stage. The predicted target is very likely to be correct, but not certain,
because the BTB may not be big enough to contain all jumps in a program, so different
jumps may replace each other's entries in the BTB.

3.1 Prediction methods for conditional jumps
When a conditional jump is encountered, the microprocessor has to predict not only the
target address, but also whether the conditional jump is taken or not taken. If the guess is
right and the right target is loaded, then the flow in the pipeline goes smoothly and fast. But
if the prediction is wrong and the microprocessor has loaded the wrong target into the
pipeline, then the pipeline has to be flushed, and the time that was been spent on fetching,
decoding and perhaps speculatively executing instructions in the wrong branch is wasted.

Saturating counter
A relatively simple method is to store information in the BTB about what the branch has
done most in the past. This can be done with a saturating counter, as shown in the state
diagram in figure 3.1.

Figure 3.1. Saturating 2-bit counter

This counter has four states. Every time the branch is taken, the counter goes up to the next
state, unless it already is in the highest state. Every time the branch is not taken, the

 10

counter goes down one step, unless it already is in the lowest state. When the counter is in
one of the highest two states, it predicts that the branch will be taken the next time. When
the counter is in one of the lowest two states, it predicts that the branch will not be taken the
next time. If the branch has been not taken several times in a row, then the counter will be
in the lowest state, called "strongly not taken". The branch then has to be taken twice for the
prediction to change to taken. Likewise, if the branch has been taken several times in a row,
it will be in state "Strongly taken". It has to be not taken twice before the prediction changes
to not taken. In other words, the branch has to deviate twice from what it has done most in
the past before the prediction changes.

This method is good for a branch that does the same most of the time, but not good for a
branch that changes often. The P1 uses this method, though with a flaw, as explained on
page 14.

Two-level adaptive predictor with local history tables
Consider the behavior of the counter in figure 3.1 for a branch that is taken every second
time. If it starts in state "strongly not taken", then the counter will alternate between state
"strongly not taken" and "weakly not taken". The prediction will always be "not taken", which
will be right only 50% of the time. Likewise, if it starts in state "strongly taken" then it will
predict "taken" all the time. The worst case is if it happens to start in state "weakly taken"
and alternates between "weakly not taken" and "weakly taken". In this case, the branch will
be mispredicted all the time.

A method of improving the prediction rate for branches with such a regularly recurring
pattern is to remember the history of the last n occurrences of the branch and use one
saturating counter for each of the possible 2n history patterns. This method, which was
invented by T.-Y. Yeh and Y. N. Patt, is illustrated in figure 3.2.

Figure 3.2. Adaptive two-level predictor

Consider the example of n = 2. This means that the last two occurrences of the branch are
stored in a 2-bit shift register. This branch history register can have 4 different values: 00,
01, 10, and 11; where 0 means "not taken" and 1 means "taken". Now, we make a pattern
history table with four entries, one for each of the possible branch histories. Each entry in
the pattern history table contains a 2-bit saturating counter of the same type as in figure 3.1.
The branch history register is used for choosing which of the four saturating counters to use.
If the history is 00 then the first counter is used. If the history is 11 then the last of the four
counters is used.

In the case of a branch that is alternately taken and not taken, the branch history register
will always contain either 01 or 10. When the history is 01 we will use the counter with the
binary number 01B in the pattern history table. This counter will soon learn that after 01
comes a 0. Likewise, counter number 10B will learn that after 10 comes a 1. After a short
learning period, the predictor will make 100% correct predictions. Counters number 00B and
11B will not be used in this case.

 11

A branch that is alternately taken twice and not taken twice will also be predicted 100% by
this predictor. The repetitive pattern is 0011-0011-0011. Counter number 00B in the pattern
history table will learn that after 00 comes a 1. Counter number 01B will learn that after a 01
comes a 1. Counter number 10B will learn that after 10 comes a 0. And counter number
11B will learn that after 11 comes a 0. But the repetitive pattern 0001-0001-0001 will not be
predicted correctly all the time because 00 can be followed by either a 0 or a 1.

The mechanism in figure 3.2 is called a two-level adaptive predictor. The general rule for a
two-level adaptive predictor with an n-bit branch history register is as follows:

Any repetitive pattern with a period of n+1 or less can be predicted perfectly
after a warm-up time no longer than three periods. A repetitive pattern with a
period p higher than n+1 and less than or equal to 2n can be predicted perfectly
if all the p n-bit subsequences are different.

To illustrate this rule, consider the repetitive pattern 0011-0011-0011 in the above example.
The 2-bit subsequences are 00, 01, 11, 10. Since these are all different, they will use
different counters in the pattern history table of a two-level predictor with n = 2. With n = 4,
we can predict the repetitive pattern 000011-000011-000011 with period 6, because the six
4-bit subsequences: 0000, 0001, 0011, 0110, 1100, 1000, are all different. But the pattern
000001-000001-000001, which also has period 6, cannot be predicted perfectly, because
the subsequence 0000 can be followed by either a 0 or a 1.

The PMMX, PPro, P2 and P3 all use a two-level adaptive predictor with n = 4. This requires
36 bits of storage for each branch: two bits for each of the 16 counters in the pattern history
table, and 4 bits for the branch history register.

The powerful capability of pattern recognition has a minor drawback in the case of
completely random sequences with no regularities. The following table lists the experimental
fraction of mispredictions for a completely random sequence of taken and not taken:

fraction of taken/not taken fraction of mispredictions
0.001/0.999 0.001001
0.01/0.99 0.0101
0.05/0.95 0.0525
0.10/0.90 0.110
0.15/0.85 0.171
0.20/0.80 0.235
0.25/0.75 0.300
0.30/0.70 0.362
0.35/0.65 0.417
0.40/0.60 0.462
0.45/0.55 0.490
0.50/0.50 0.500

Table 3.1. Probability of mispredicting random branch

The fraction of mispredictions is slightly higher than it would be without pattern recognition
because the processor keeps trying to find repeated patterns in a sequence that has no
regularities. The values in table 3.1 also apply to a predictor with a global history table as
well as an agree predictor, described below.

Two-level adaptive predictor with global history table
Since the storage requirement for the two-level predictor grows exponentially with the
number of history bits n, there is a practical limit to how big we can make n. One way of

 12

overcoming this limitation is to share the branch history register and the pattern history table
among all the branches rather than having one set for each branch.

Imagine a two-level predictor with a global branch history register, storing the history of the
last n branches, and a shared pattern history table. The prediction of a branch is made on
the basis of the last n branch events. Some or all of these events may be occurrences of the
same branch. If the innermost loop in a program contains m conditional jumps, then the
prediction of a branch within this loop can rely on floor(n/m) occurrences of the same
branch in the branch history register, while the rest of the entries come from other branches.
If this is enough for defining the pattern of this branch, or if it is highly correlated with the
other branches, then we can expect the prediction rate to be good. The 64 bit AMD
processor uses this method with n = 8. The P4E processor uses this method with n = 16.

The agree predictor
The disadvantage of using global tables is that branches that behave differently may share
the same entry in the global pattern history table. This problem can be reduced by storing a
biasing bit for each branch. The biasing bit indicates whether the branch is mostly taken or
not taken. The predictors in the pattern history table now no longer indicate whether the
branch is predicted to be taken or not, but whether it is predicted to go the same way or the
opposite way of the biasing bit. Since the prediction is more likely to agree than to disagree
with the biasing bit, the probability of negative interference between branches that happen
to use the same entry in the pattern history table is reduced, but not eliminated. My
research indicates that the P4 is using one version of this method, as shown in figure 3.3.

Figure 3.3. Agree predictor

Each branch has a local predictor, which is simply a saturating counter of the same type as
shown in figure 3.1. The global pattern history table, which is indexed by the global branch
history register, indicates whether the branch is predicted to agree or disagree with the
output of the local predictor.

The global branch history register has 16 bits in the P4. Since, obviously, some of the 216
different history patterns are more common than others, we have the problem that some
entries in the pattern history table will be used by several branches, while many other
entries will never be used at all, if the pattern history table is indexed by the branch history
alone. In order to make the use of these entries more evenly distributed, and thus reduce
the probability that two branches use the same entry, the pattern history table may be
indexed by a combination of the global history and the branch address. The literature
recommends that the index into the pattern history table is generated by an XOR
combination of the history bits and the branch address. However, my experimental results
do not confirm such a design. The indexing function in figure 3.3 may be a more complex

 13

hashing function of the history and the branch address, or it may involve the branch target
address, BTB entry address or trace cache address.

Since the indexing function is not known, it is impossible to predict whether two branches
will use the same entry in the pattern history table. For the same reason, I have not been
able to measure the size of the pattern history table, but must rely on rumors in the
literature.

(Literature: E. Sprangle, et. al.: The Agree Predictor: A Mechanism for Reducing Negative
Branch History Interference. Proceedings of the 24th International Symposium on Computer
Architecture, Denver, June 1997. J. Stokes: The Pentium 4 and the G4e: an Architectural
Comparison: Part I. arstechnica.com, Mar. 2001).

Loop counter
The branch that controls a loop will typically go n-1 times one way and then one time the
other way, where n is the period. For example the loop for (i=0; i<6; i++) will
produce the branch pattern 000001-000001 or 111110-111110, depending on whether the
branch instruction is at the top or the bottom of the loop code. A loop with a high period and
several branches inside the loop body would require a very long history table and many
entries in the pattern history table for making good predictions in a two-level predictor. The
best solution to this problem is to use a different prediction method for loops, called a loop
counter or switch counter. A counter counts the period n the first time the loop is executed.
On subsequent executions, the repetition count is compared with n and the loop is predicted
to exit when the count equals the period. The information that must be stored in the BTB for
a loop counter includes: whether the branch has loop behavior or not, whether the branch is
taken or not taken at loop exit, the period, the current repetition count, and the branch
target.

The PM and Core2 have a loop counter with 6 bits, allowing loops with a maximum period of
64 to be predicted perfectly.

(Literature: US Patent 5909573).

Indirect jump prediction
An indirect jump or call is a control transfer instruction that has more than two possible
targets. A C++ program can generate an indirect jump or call with a switch statement, a
function pointer, or a virtual function. An indirect jump or call is generated in assembly by
specifying a register or a memory variable or an indexed array as the destination of a jump
or call instruction. Many processors make only one BTB entry for an indirect jump or call.
This means that it will always be predicted to go to the same target as it did last time.

As object oriented programming with polymorphous classes has become more common,
there is a growing need for predicting indirect calls with multiple targets. This can be done
by assigning a new BTB entry for every new jump target that is encountered. The history
buffer and pattern history table must have space for more than one bit of information for
each jump incident in order to distinguish more than two possible targets.

The PM is the first x86 processor to implement this method. The prediction rule on p. 11 still
applies with the modification that the theoretical maximum period that can be predicted
perfectly is mn, where m is the number of different targets per indirect jump, because there
are mn different possible n-length subsequences. However, this theoretical maximum cannot
be reached if it exceeds the size of the BTB or the pattern history table.

(Literature: Karel Driesen and Urs Hölzle: Accurate Indirect Branch Prediction. Technical
Report TRCS97-19, 1998. Department of Computer Science, University of California).

http://www.arstechnica.com/

 14

Subroutine return prediction
A subroutine return is an indirect jump that goes to wherever the subroutine was called
from. The prediction of subroutine returns is described on page 27.

Hybrid predictors
A hybrid predictor is an implementation of more than one branch prediction mechanism. A
meta-predictor predicts which of the prediction mechanisms is likely to give the best
predictions. The meta-predictor can be as simple as a two-bit saturating counter which
remembers which of two prediction schemes has worked best in the past for a particular
branch instruction.

The PM uses a hybrid predictor consisting of a two level adaptive predictor with a global
history table of length eight, combined with a loop counter.

Future branch prediction methods
It is likely that branch prediction methods will be further improved in the future as pipelines
get longer. According to the technical literature and the patent literature, the following
developments are likely:

• Hybrid predictor. A hybrid predictor with a loop counter and a two-level predictor will
probably be implemented in more processors in the future.

• Alloyed predictor. The two-level predictor can be improved by using a combination of
local and global history bits as index into the pattern history table. This eliminates the
need for the agree predictor and improves the prediction of branches that are not
correlated with any preceding branch.

• Keeping unimportant branches out of global history register. In typical programs, a
large proportion of the branches always go the same way. Such branches may be
kept out of the global history register in order to increase its information contents.

• Decoding both branches. Part or all of the pipeline may be duplicated so that both
branches can be decoded and speculatively executed simultaneously. It may
decode both branches whenever possible, or only if the prediction is uncertain.

• Neural networks. The storage requirement for the two-level predictor grows
exponentially with n, and the warm-up time may also grow exponentially with n. This
limits the performance that can be achieved with the two-level predictor. Other
methods with less storage requirements are likely to be implemented. Such new
methods may use the principles of neural networks.

• Reducing the effect of context switches. The information that the predictors have
collected is often lost due to task switches and other context switches. As more
advanced prediction methods require longer warm-up time, it is likely that new
methods will be implemented to reduce the loss during context switches.

3.2 Branch prediction in P1
The branch prediction mechanism for the P1 is very different from the other processors.
Information found in Intel documents and elsewhere on this subject is misleading, and
following the advices given in such documents is likely to lead to sub-optimal code.

The P1 has a branch target buffer (BTB), which can hold information for up to 256 jump
instructions. The BTB is organized as a 4-way set-associative cache with 64 entries per
way. This means that the BTB can hold no more than 4 entries with the same set value.
Unlike the data cache, the BTB uses a pseudo random replacement algorithm, which

 15

means that a new entry will not necessarily displace the least recently used entry of the
same set-value.

Each entry contains a saturation counter of the type shown in figure 3.1. Apparently, the
designers couldn't afford to use an extra bit for indicating whether the BTB entry is used or
not. Instead, they have equated state "strongly not taken" with "entry unused". This makes
sense because a branch with no BTB entry is predicted to be not taken anyway, in the P1. A
branch doesn't get a BTB entry until the first time it is taken. Unfortunately, the designers
have decided that a branch that is taken the first time it is seen should go to state "strongly
taken". This makes the state diagram for the predictor look like this:

Figure 3.4. Branch predictor in P1.

This is of course a sub-optimal design, and I have strong indications that it is a design flaw.
In a tight loop with no more than four instruction pairs, where the loop control branch is seen
again before the BTB has had the time to update, the output of the saturation counter is
forwarded directly to the prefetcher. In this case the state can go from "strongly not taken" to
"weakly not taken". This indicates that the originally intended behavior is as in figure 3.1.
Intel engineers have been unaware of this flaw until I published my findings in an earlier
version of this manual.

The consequence of this flaw is that a branch instruction which falls through most of the
time will have up to three times as many mispredictions as a branch instruction which is
taken most of the time. You may take this asymmetry into account by organizing branches
so that they are taken more often than not.

BTB is looking ahead (P1)
The BTB mechanism in the P1 is counting instruction pairs, rather than single instructions,
so you have to know how instructions are pairing (see page 30) in order to analyze where a
BTB entry is stored. The BTB entry for any control transfer instruction is attached to the
address of the U-pipe instruction in the preceding instruction pair. (An unpaired instruction
counts as one pair). Example:

; Example 3.1. Pentium 1 BTB mechanism
shr eax,1
mov ebx,[esi]
cmp eax,ebx
jb L

Here SHR pairs with MOV, and CMP pairs with JB. The BTB entry for JB L is thus attached to
the address of the SHR EAX,1 instruction. When this BTB entry is met, and if it predicts the
branch to be taken, then the P1 will read the target address from the BTB entry, and load
the instructions following L into the pipeline. This happens before the branch instruction has
been decoded, so the Pentium relies solely on the information in the BTB when doing this.

 16

Instructions are seldom pairing the first time they are executed (see page 30). If the
instructions above are not pairing, then the BTB entry should be attached to the address of
the CMP instruction, and this entry would be wrong on the next execution, when instructions
are pairing. However, in most cases the P1 is smart enough to not make a BTB entry when
there is an unused pairing opportunity, so you don't get a BTB entry until the second
execution, and hence you won't get a prediction until the third execution. (In the rare case,
where every second instruction is a single-byte instruction, you may get a BTB entry on the
first execution which becomes invalid in the second execution, but since the instruction it is
attached to will then go to the V-pipe, it is ignored and gives no penalty. A BTB entry is only
read if it is attached to the address of a U-pipe instruction).

A BTB entry is identified by its set-value which is equal to bits 0-5 of the address it is
attached to. Bits 6-31 are then stored in the BTB as a tag. Addresses which are spaced a
multiple of 64 bytes apart will have the same set-value. You can have no more than four
BTB entries with the same set-value.

Consecutive branches
When a jump is mispredicted, then the pipeline gets flushed. If the next instruction pair
executed also contains a control transfer instruction, then the P1 will not load its target
because it cannot load a new target while the pipeline is being flushed. The result is that the
second jump instruction is predicted to fall through regardless of the state of its BTB entry.
Therefore, if the second jump is also taken, then you will get another penalty. The state of
the BTB entry for the second jump instruction does get correctly updated, though. If you
have a long chain of control transfer instructions, and the first jump in the chain is
mispredicted, then the pipeline will get flushed all the time, and you will get nothing but
mispredictions until you meet an instruction pair which does not jump. The most extreme
case of this is a loop which jumps to itself: It will get a misprediction penalty for each
iteration.

This is not the only problem with consecutive control transfer instructions. Another problem
is that you can have another branch instruction between a BTB entry and the control
transfer instruction it belongs to. If the first branch instruction jumps to somewhere else,
then strange things may happen. Consider this example:

 ; Example 3.2. P1 consecutive branches
 shr eax,1
 mov ebx,[esi]
 cmp eax,ebx
 jb L1
 jmp L2
L1: mov eax,ebx
 inc ebx

When JB L1 falls through, then we will get a BTB entry for JMP L2 attached to the address
of CMP EAX,EBX. But what will happen when JB L1 later is taken? At the time when the
BTB entry for JMP L2 is read, the processor doesn't know that the next instruction pair does
not contain a jump instruction, so it will actually predict the instruction pair MOV EAX,EBX /
INC EBX to jump to L2. The penalty for predicting non-jump instructions to jump is 3 clock
cycles. The BTB entry for JMP L2 will get its state decremented, because it is applied to
something that doesn't jump. If we keep going to L1, then the BTB entry for JMP L2 will be
decremented to state 1 and 0, so that the problem will disappear until next time JMP L2 is
executed.

The penalty for predicting the non-jumping instructions to jump only occurs when the jump
to L1 is predicted. In the case that JB L1 is mispredictedly jumping, then the pipeline gets
flushed and we won't get the false L2 target loaded, so in this case we will not see the

 17

penalty of predicting the non-jumping instructions to jump, but we do get the BTB entry for
JMP L2 decremented.

Suppose, now, that we replace the INC EBX instruction above with another jump
instruction. This third jump instruction will then use the same BTB entry as JMP L2 with the
possible penalty of predicting a wrong target.

To summarize, consecutive jumps can lead to the following problems in the P1:

• Failure to load a jump target when the pipeline is being flushed by a preceding
mispredicted jump.

• A BTB entry being misapplied to non-jumping instructions and predicting them to

jump.

• A second consequence of the above is that a misapplied BTB entry will get its state
decremented, possibly leading to a later misprediction of the jump it belongs to.
Even unconditional jumps can be predicted to fall through for this reason.

• Two jump instructions may share the same BTB entry, leading to the prediction of a

wrong target.

All this mess may give you a lot of penalties, so you should definitely avoid having an
instruction pair containing a jump immediately after another poorly predictable control
transfer instruction or its target in the P1. It is time for another illustrative example:

 ; Example 3.3a. P1 consecutive branches
 call P
 test eax,eax
 jz L2
L1: mov [edi],ebx
 add edi,4
 dec eax
 jnz L1
L2: call P

First, we may note that the function P is called alternately from two different locations. This
means that the target for the return from P will be changing all the time. Consequently, the
return from P will always be mispredicted.

Assume, now, that EAX is zero. The jump to L2 will not have its target loaded because the
mispredicted return caused a pipeline flush. Next, the second CALL P will also fail to have
its target loaded because JZ L2 caused a pipeline flush. Here we have the situation where
a chain of consecutive jumps makes the pipeline flush repeatedly because the first jump
was mispredicted. The BTB entry for JZ L2 is stored at the address of P's return
instruction. This BTB entry will now be misapplied to whatever comes after the second CALL
P, but that doesn't give a penalty because the pipeline is flushed by the mispredicted
second return.

Now, let's see what happens if EAX has a nonzero value the next time: JZ L2 is always
predicted to fall through because of the flush. The second CALL P has a BTB entry at the
address of TEST EAX,EAX. This entry will be misapplied to the MOV/ADD pair, predicting it
to jump to P. This causes a flush which prevents JNZ L1 from loading its target. If we have
been here before, then the second CALL P will have another BTB entry at the address of
DEC EAX. On the second and third iteration of the loop, this entry will also be misapplied to
the MOV/ADD pair, until it has had its state decremented to 1 or 0. This will not cause a
penalty on the second iteration because the flush from JNZ L1 prevents it from loading its

 18

false target, but on the third iteration it will. The subsequent iterations of the loop have no
penalties, but when it exits, JNZ L1 is mispredicted. The flush would now prevent CALL P
from loading its target, were it not for the fact that the BTB entry for CALL P has already
been destroyed by being misapplied several times. We can improve this code by putting in
some NOP's to separate all consecutive jumps:

 ; Example 3.3b. P1 consecutive branches
 call P
 test eax,eax
 nop
 jz L2
L1: mov [edi],ebx
 add edi,4
 dec eax
 jnz L1
L2: nop
 nop
 call P

The extra NOP's cost 2 clock cycles, but they save much more. Furthermore, JZ L2 is now
moved to the U-pipe which reduces its penalty from 4 to 3 when mispredicted. The only
problem that remains is that the returns from P are always mispredicted. This problem can
only be solved by replacing the call to P by an inline macro.

3.3 Branch prediction in PMMX, PPro, P2, and P3

BTB organization
The branch target buffer (BTB) of the PMMX has 256 entries organized as 16 ways * 16
sets. Each entry is identified by bits 2-31 of the address of the last byte of the control
transfer instruction it belongs to. Bits 2-5 define the set, and bits 6-31 are stored in the BTB
as a tag. Control transfer instructions which are spaced 64 bytes apart have the same set-
value and may therefore occasionally push each other out of the BTB. Since there are 16
ways per set, this won't happen too often.

The branch target buffer (BTB) of the PPro, P2 and P3 has 512 entries organized as 16
ways * 32 sets. Each entry is identified by bits 4-31 of the address of the last byte of the
control transfer instruction it belongs to. Bits 4-8 define the set, and all bits are stored in the
BTB as a tag. Control transfer instructions which are spaced 512 bytes apart have the same
set-value and may therefore occasionally push each other out of the BTB. Since there are
16 ways per set, this won't happen too often.

The PPro, P2 and P3 allocate a BTB entry to any control transfer instruction the first time it
is executed. The PMMX allocates it the first time it jumps. A branch instruction that never
jumps will stay out of the BTB on the PMMX. As soon as it has jumped once, it will stay in
the BTB, even if it never jumps again. An entry may be pushed out of the BTB when another
control transfer instruction with the same set-value needs a BTB entry.

Misprediction penalty
In the PMMX, the penalty for misprediction of a conditional jump is 4 clocks in the U-pipe,
and 5 clocks if it is executed in the V-pipe. For all other control transfer instructions it is 4
clocks.

In the PPro, P2 and P3, the misprediction penalty is higher due to the long pipeline. A
misprediction usually costs between 10 and 20 clock cycles.

 19

Pattern recognition for conditional jumps
The PMMX, PPro, P2 and P3 all use a two-level adaptive branch predictor with a local 4-bit
history, as explained on page 10. Simple repetitive patterns are predicted well by this
mechanism. For example, a branch which is alternately taken twice and not taken twice, will
be predicted all the time after a short learning period. The rule on page 11 tells which
repetitive branch patterns can be predicted perfectly. All patterns with a period of five or less
are predicted perfectly. This means that a loop which always repeats five times will have no
mispredictions, but a loop that repeats six or more times will not be predicted.

The branch prediction mechanism is also good at handling 'almost regular' patterns, or
deviations from the regular pattern. Not only does it learn what the regular pattern looks like.
It also learns what deviations from the regular pattern look like. If deviations are always of
the same type, then it will remember what comes after the irregular event, and the deviation
will cost only one misprediction. Likewise, a branch which switches back and forth between
two different regular patterns is predicted well.

Tight loops (PMMX)
Branch prediction in the PMMX is not reliable in tiny loops where the pattern recognition
mechanism doesn't have time to update its data before the next branch is met. This means
that simple patterns, which would normally be predicted perfectly, are not recognized.
Incidentally, some patterns which normally would not be recognized, are predicted perfectly
in tight loops. For example, a loop which always repeats 6 times would have the branch
pattern 111110 for the branch instruction at the bottom of the loop. This pattern would
normally have one or two mispredictions per iteration, but in a tight loop it has none. The
same applies to a loop which repeats 7 times. Most other repeat counts are predicted
poorer in tight loops than normally.

To find out whether a loop will behave as 'tight' on the PMMX you may follow the following
rule of thumb: Count the number of instructions in the loop. If the number is 6 or less, then
the loop will behave as tight. If you have more than 7 instructions, then you can be
reasonably sure that the pattern recognition functions normally. Strangely enough, it doesn't
matter how many clock cycles each instruction takes, whether it has stalls, or whether it is
paired or not. Complex integer instructions do not count. A loop can have lots of complex
integer instructions and still behave as a tight loop. A complex integer instruction is a non-
pairable integer instruction that always takes more than one clock cycle. Complex floating
point instructions and MMX instructions still count as one. Note, that this rule of thumb is
heuristic and not completely reliable.

Tight loops on PPro, P2 and P3 are predicted normally, and take minimum two clock cycles
per iteration.

Indirect jumps and calls (PMMX, PPro, P2 and P3)
There is no pattern recognition for indirect jumps and calls, and the BTB can remember no
more than one target for an indirect jump. It is simply predicted to go to the same target as it
did last time.

JECXZ and LOOP (PMMX)
There is no pattern recognition for these two instructions in the PMMX. They are simply
predicted to go the same way as last time they were executed. These two instructions
should be avoided in time-critical code for PMMX. In PPro, P2 and P3 they are predicted
using pattern recognition, but the LOOP instruction is still inferior to DEC ECX / JNZ.

3.4 Branch prediction in P4 and P4E
The organization of the branch target buffer (BTB) in the P4 and P4E is not known in detail.
It has 4096 entries, probably organized as 8 ways * 512 sets. It is indexed by addresses in

 20

the trace cache which do not necessarily have a simple correspondence to addresses in the
original code. Consequently, it is difficult for the programmer to predict or avoid BTB
contentions. Far jumps, calls and returns are not predicted in the P4 and P4E.

The processor allocates a BTB entry to any near control transfer instruction the first time it
jumps. A branch instruction which never jumps will stay out of the BTB, but not out of the
branch history register. As soon as it has jumped once, it will stay in the BTB, even if it
never jumps again. An entry may be pushed out of the BTB when another control transfer
instruction with the same set-value needs a BTB entry. All conditional jumps, including
JECXZ and LOOP, contribute to the branch history register. Unconditional and indirect
jumps, calls and returns do not contribute to the branch history.

Branch mispredictions are much more expensive on the P4 and P4E than on previous
generations of microprocessors. The time it takes to recover from a misprediction is rarely
less than 24 clock cycles, and typically around 45 µops. Apparently, the microprocessor
cannot cancel a bogus µop before it has reached the retirement stage. This means that if
you have a lot of µops with long latency or poor throughput, then the penalty for a
misprediction may be as high as 100 clock cycles or more. It is therefore very important to
organize code so that the number of mispredictions is minimized.

Pattern recognition for conditional jumps in P4
The P4 uses an "agree" predictor with a 16-bit global history, as explained on page 12. The
branch history table has 4096 entries, according to an article in Ars Technica (J. Stokes:
The Pentium 4 and the G4e: an Architectural Comparison: Part I. arstechnica.com, Mar.
2001). The prediction rule on page 11 tells us that the P4 can predict any repetitive pattern
with a period of 17 or less, as well as some patterns with higher history. However, this
applies to the global history, not the local history. You therefore have to look at the
preceding branches in order to determine whether a branch is likely to be well predicted. I
will explain this with the following example:

 ; Example 3.4. P4 loops and branches
 mov eax, 100
A: ...
 ...
 mov ebx, 16
B: ...
 sub ebx, 1
 jnz B
 test eax, 1
 jnz X1
 call EAX_IS_EVEN
 jmp X2
X1: call EAX_IS_ODD
X2: ...
 mov ecx, 0
C1: cmp ecx, 10
 jnb C2
 ...
 add ecx, 1
 jmp C1
C2: ...
 sub eax, 1
 jnz A

The A loop repeats 100 times. The JNZ A instruction is taken 99 times and falls through 1
time. It will be mispredicted when it falls through. The B and C loops are inside the A loop.
The B loop repeats 16 times, so without considering the prehistory, we would expect it to be
predictable. But we have to consider the prehistory. With the exception of the first time, the
prehistory for JNZ B will look like this: JNB C2: not taken 10 times, taken 1 time (JMP C1

 21

does not count because it is unconditional); JNZ A taken; JNZ B taken 15 times, not taken
1 time. This totals 17 consecutive taken branches in the global history before JNZ B is not
taken. It will therefore be mispredicted once or twice for each cycle. There is a way to avoid
this misprediction. If you insert a dummy branch that always falls through anywhere
between the A: and B: labels, then JNZ B is likely to be predicted perfectly, because the
prehistory now has a not taken before the 15 times taken. The time saved by predicting JNZ
B well is far more than the cost of an extra dummy branch. The dummy branch may, for
example, be TEST ESP,ESP / JC B.

JNZ X1 is taken every second time and is not correlated with any of the preceding 16
conditional jump events, so it will not be predicted well.

Assuming that the called procedures do not contain any conditional jumps, the prehistory for
JNB C2 is the following: JNZ B taken 15 times, not taken 1 time; JNZ X1 taken or not
taken; JNB C2: not taken 10 times, taken 1 time. The prehistory of JNB C2 is thus always
unique. In fact, it has 22 different and unique prehistories, and it will be predicted well. If
there was another conditional jump inside the C loop, for example if the JMP C1 instruction
was conditional, then the JNB C2 loop would not be predicted well, because there would
be 20 instances between each time JNB C2 is taken.

In general, a loop cannot be predicted well on the P4 if the repeat count multiplied by the
number of conditional jumps inside the loop exceeds 17.

Alternating branches
While the C loop in the above example is predictable, and the B loop can be made
predictable by inserting a dummy branch, we still have a big problem with the JNZ X1
branch. This branch is alternately taken and not taken, and it is not correlated with any of
the preceding 16 branch events. Let's study the behavior of the predictors in this case. If the
local predictor starts in state "weakly not taken", then it will alternate between "weakly not
taken" and "strongly not taken" (see figure 3.1). If the entry in the global pattern history table
starts in an agree state, then the branch will be predicted to fall through every time, and we
will have 50% mispredictions (see figure 3.3). If the global predictor happens to start in state
"strongly disagree", then it will be predicted to be taken every time, and we still have 50%
mispredictions. The worst case is if the global predictor starts in state "weakly disagree". It
will then alternate between "weakly agree" and "weakly disagree", and we will have 100%
mispredictions. There is no way to control the starting state of the global predictor, but we
can control the starting state of the local predictor. The local predictor starts in state "weakly
not taken" or "weakly taken", according to the rules of static prediction, explained on page
28 below. If we swap the two branches and replace JNZ with JZ, so that the branch is taken
the first time, then the local predictor will alternate between state "weakly not taken" and
"weakly taken". The global predictor will soon go to state "strongly disagree", and the branch
will be predicted correctly all the time. A backward branch that alternates would have to be
organized so that it is not taken the first time, to obtain the same effect. Instead of swapping
the two branches, we may insert a 3EH prediction hint prefix immediately before the JNZ
X1 to change the static prediction to "taken" (see p. 28). This will have the same effect.

While this method of controlling the initial state of the local predictor solves the problem in
most cases, it is not completely reliable. It may not work if the first time the branch is seen is
after a mispredicted preceding branch. Furthermore, the sequence may be broken by a task
switch or other event that pushes the branch out of the BTB. We have no way of predicting
whether the branch will be taken or not taken the first time it is seen after such an event.
Fortunately, it appears that the designers have been aware of this problem and
implemented a way to solve it. While researching these mechanisms, I discovered an
undocumented prefix, 64H, which does the trick on the P4. This prefix doesn't change the
static prediction, but it controls the state of the local predictor after the first event so that it

 22

will toggle between state "weakly not taken" and "weakly taken", regardless of whether the
branch is taken or not taken the first time. This trick can be summarized in the following rule:

A branch which is taken exactly every second time, and which doesn't correlate with any of
the preceding 16 branch events, can be predicted well on the P4 if it is preceded by a 64H
prefix. This prefix is coded in the following way:

; Example 3.5. P4 alternating branch hint
DB 64H ; Hint prefix for alternating branch
jnz X1 ; Branch instruction

No prefix is needed if the branch can see a previous instance of itself in the 16-bit
prehistory.

The 64H prefix has no effect and causes no harm on any previous microprocessor. It is an
FS segment prefix. The 64H prefix cannot be used together with the 2EH and 3EH static
prediction prefixes.

Pattern recognition for conditional jumps in P4E
Branch prediction in the P4E is simpler than in the P4. There is no agree predictor, but only
a 16-bit global history and a global pattern history table. This means that a loop can be
predicted well on the P4E if the repeat count multiplied by the number of conditional jumps
inside the loop does not exceed 17.

Apparently, the designers have decided that the improvement in prediction rate of the agree
predictor is too small to justify the considerable complexity. However, it appears that the
P4E has inherited a little peculiarity from the agree predictor of the P4. The 64H prefix
influences the first few predictions of a branch in a way that might have been optimal for an
alternating branch if there was an agree predictor. This has no useful purpose, but causes
no serious harm either.

3.5 Branch prediction in PM and Core2
The branch prediction mechanism is the same in PM and Core2.

Misprediction penalty
The misprediction penalty is approximately 13 clock cycles in the PM and 15 clock cycles in
the Core2, corresponding to the length of the pipeline. Far jumps, far calls and far returns
are not predicted.

Pattern recognition for conditional jumps
The PM and Core2 have the most advanced branch prediction mechanism yet seen in an
x86 processor. Conditional jumps are handled by a hybrid predictor combining a two-level
predictor and a loop counter. In addition, there is a mechanism for predicting indirect jumps
and indirect calls.

A branch instruction is recognized as having loop behavior if it goes one way n-1 times and
then goes the other way one time. A loop counter makes it possible to predict branches with
loop behavior perfectly if the period n is no longer than 64. The loop counters are stored for
each branch without using the global history table. Instead, the loop counters have their own
buffer with 128 entries. Therefore, the prediction of a loop does not depend on the number
of other branches inside the loop. Nested loops are predicted perfectly.

Branches that do not have loop behavior are predicted using a two-level predictor with an 8-
entry global history buffer and a history pattern table of unknown size. The ability to predict
a repetitive branch pattern, other than a simple loop pattern, depends on the number of

 23

branches in a loop according to the rules for a predictor with a global history table,
explained on p. 11.

A meta-predictor determines whether a branch has loop behavior or not and chooses the
prediction mechanism accordingly. The mechanism of the meta predictor is not known.

Pattern recognition for indirect jumps and calls
Indirect jumps and indirect calls (but not returns) are predicted using the same two-level
predictor principle as branch instructions. Branches without loop behavior and indirect
jumps/calls share the same history buffer and history pattern table, but apparently not the
same BTB. An indirect jump/call gets a new BTB entry every time it jumps to a new target. It
can have more then four BTB entries even though the BTB has only four ways. The history
buffer stores more than one bit for each entry, probably 6 or 7, in order to distinguish
between more than two targets of an indirect jump/call. This makes it possible to predict a
periodic jump pattern that switches between several different targets. The maximum number
of different targets that I have seen predicted perfectly is 36, but such impressive
predictions are rare for reasons explained below. A periodic pattern can be predicted if all 8-
length history sub-patterns are different. This also improves the prediction of subsequent
conditional jumps because they share the same history buffer. A conditional jump can make
a prediction based on the distinction between different jump targets of a preceding indirect
jump.

The above observations indicate that the history buffer must have at least 8*6 = 48 bits, but
a history pattern table of 248 entries is physically impossible. The 48 or more bits must be
compressed by some hashing algorithm into a key of x bits to index the 2x entries of the
history pattern table. The value of x is not known, but it is probably between 10 and 16. The
hashing algorithm may be a simple XOR combination of bits from the history buffer and the
address or the BTB index of the branch instruction. A more complex hashing function is also
possible.

My experiments show that the PM and Core2 make more mispredictions than expected in
programs where there are more than a few branches with non-loop behavior or indirect
jumps/calls in the innermost loop. Test results were not always the same for identical
experiments. There is evidently a dependence on the state of the BTB and the history
pattern table prior to the experiment.

The design gives three probable causes for poor predictions: The first cause is contention
for entries in the BTB. The second cause is aliasing of keys generated by the hashing
algorithm causing contention between history pattern table entries. It appears that this
aliasing phenomenon occurs not only for indirect jumps/calls but also for conditional jumps
predicted by the two-level predictor. The third possible cause is poor performance of the
meta predictor. My guess is that an insufficient size of the history pattern table is the main
reason for lower-than-expected prediction rates.

BTB organization
There appears to be different branch target buffers for different types of branches in the PM
and Core2. My measurements on a Core2 indicate the following BTB organizations:

For unconditional jumps and branches without loop behavior:
4 ways by 512 sets = 2048 entries. Each entry is identified by bits 0 - 21 of the address of
the last byte of the control transfer instruction it belongs to. Bits 4 - 12 define the set, and
the remaining bits are stored in the BTB as a tag. Entries that differ only by bits 22 - 31 will
clash into the same BTB entry. A BTB entry is allocated the first time a control transfer
instruction is met.

For branches with loop behavior:

 24

2 ways by 64 sets = 128 entries. Each entry is identified by bits 0 - 13 of the address of the
last byte of the control transfer instruction it belongs to. Bits 4 - 9 define the set. Entries that
differ only by bits 14 - 31 will clash into the same BTB entry.

For indirect jumps and indirect calls:
4 ways by 2048 sets = 8192 entries. Each entry is identified by bits 0 - 21 of the address of
the last byte of the control transfer instruction it belongs to. Bits 0 - 10 define the set, and
the remaining bits are stored in the BTB as a tag. Entries that differ only by bits 22 - 31 will
clash into the same BTB entry.

For near returns:
The return stack buffer has 16 entries.

It should be noted that these figures are somewhat uncertain because my measurements
on branches without loop behavior are inconsistent. The inconsistency is probably due to
the fact that the hashing function for the history pattern table is not known.

(Literature: S. Gochman, et al.: The Intel Pentium M Processor: Microarchitecture and
Performance. Intel Technology Journal, vol. 7, no. 2, 2003).

3.6 Branch prediction in AMD

BTB organization
The branch prediction mechanism of the K8 and K10 AMD processors is connected to the
code cache. The level-1 code cache has 1024 lines of 4*16 bytes each, 2-way set
associative.

Each 16-bytes block in the code cache has an associated set of branch indicators. There
are nine branch indicators, associated with byte number 0, 1, 3, 5, 7, 9, 11, 13 and 15 of the
code block. Most branch instructions are two or more bytes long. A branch instruction that is
two or more bytes long will have at least one branch indicator even when there are only
indicators for the odd addresses and address 0. The extra indicator at byte 0 covers the
case where a branch instruction crosses a 16-bytes boundary and ends at byte 0.

Each branch indicator has two bits of information to cover the following cases: (0) no branch
or never jump, (1) use branch selector 1, (2) use branch selector 2, (3) use branch selector
3. There are three branch selectors in addition to the nine branch indicators. Each branch
selector has an index into the branch target buffer as well as a local branch prediction
information. The local branch prediction information can be "never jump", "always jump",
"use dynamic prediction", or "use return stack buffer". There is also an indication of whether
the branch is a call. This is used for pushing a return address on the return address stack
(see page 27).

The branch target addresses are saved in the branch target buffer (BTB), which has 2048
entries. Return addresses are stored in the return address stack, which has 12 entries in K8
and 24 entries in K10.

The branch prediction mechanism works as follows: A branch that is never taken gets no
branch indicator, no branch selector and no BTB entry. The first time a branch is taken, it
gets a branch selector which is set to "always jump" and a BTB entry to indicate the target
address. If the branch is later not taken, then the branch selector is changed to "use
dynamic prediction". It never goes back from "use dynamic prediction" to "always jump" or
"never jump". The dynamic prediction mechanism is described below. The predictor bits can
indicate at least the following values: "no jump", "always jump", "use dynamic prediction",
"use return stack buffer". The K10 also has predictors for indirect jumps.

 25

Some documents say that return instructions occupy a branch target entry which is used
when the return stack buffer is exhausted, but experiments seem to indicate that returns are
always mispredicted when the return stack buffer is exhausted.

The branch indicators and part of the local branch prediction information is copied to the
level-2 cache when evicted from the level-1 cache. The index into the BTB is not copied to
the level-2 cache due to lack of space. There is a branch target address calculator which
can calculate the target address for direct jumps and calls in case a BTB entry is missing or
the BTB index has been lost due to eviction to the level-2 cache. The calculation of a lost
branch target address takes an extra 4 clock cycles, according to my measurements, which
is less than the cost of a complete misprediction. This allows conditional and unconditional
jumps and calls to be predicted correctly, even if they have been evicted from the BTB
and/or the level-1 cache. The branch target address calculator cannot calculate the targets
of indirect jumps and returns, of course. Returns are mispredicted if they have been evicted
from the level-1 cache even they are still in the return stack buffer.

A drawback of this design is that there can be no more than three control transfer
instructions for every aligned 16-bytes block of code, except for branches that are never
taken. If there are more than three taken branches in the same 16-bytes block of code then
they will keep stealing branch selectors and BTB entries from each other and cause two
mispredictions for every execution. It is therefore important to avoid having more than three
jumps, branches, calls and returns in a single aligned 16-bytes block of code. Branches that
are never taken do not count. The three branch limit can easily be exceeded if for example
a switch/case statement is implemented as a sequence of dec / jz instructions.

A further problem is that the design allows only one control transfer instruction for every two
bytes of code. Most control transfer instructions use more than one byte of code, but return
instructions can be coded as a single-byte instruction. This can cause two kinds of
problems. This first kind of problem occurs if two branches share the same branch selector.
If a branch instruction ending at an even address if followed by a single-byte return
instruction at the following odd address, then the two instructions will share the same
branch selector and will therefore be mispredicted most of the time.

The second kind of problem relates to single-byte return instructions having no branch
selector. This can happen when there is a jump directly to a single-byte return instruction or
a single-byte return instruction follows immediately after a mispredicted branch. If the single-
byte return instruction is at an even address not divisible by 16 then the branch selector will
not be loaded in these situations, and the return will be mispredicted.

The first kind of problem can be avoided by placing the single-byte return instruction at an
even address, the second kind of problem by placing it at an odd address (or an address
divisible by 16). Both kinds of problem can be avoided by making the return instruction
longer than one byte. This can be done by inserting a segment prefix or F3 prefix before the
return instruction to make it two bytes long, or by coding the return instruction with an offset
operand of zero, which makes it three bytes long. It is recommended to make return
instructions longer than one byte if there is a conditional jump immediately before it, or if
there is a jump directly to it. A call instruction immediately before a return should be
replaced by a jump.

Misprediction penalty
AMD manuals say that the branch misprediction penalty is 10 clock cycles if the code
segment base is zero and 12 clocks if the code segment base is nonzero. In my
measurements, I have found a minimum branch misprediction penalty of 12 and 13 clock
cycles, respectively. The code segment base is zero in most 32-bit operating systems and
all 64-bit systems. It is almost always nonzero in 16-bit systems (see page 112).

 26

The misprediction penalty corresponds to the length of the pipeline. Far jumps, calls and
returns are not predicted.

Pattern recognition for conditional jumps
The AMD uses a two-level adaptive branch predictor with a global 8 or 12-bit history, as
explained on page 11. Simple repetitive patterns and small loops with a repeat count up to 9
or 13 can be predicted by this mechanism. The rule on page 11 tells which repetitive branch
patterns can be predicted perfectly.

The AMD optimization guide tells that the global pattern history table has 16k entries. This
table is indexed by the 8 or 12 bits of the global history combined with part of the branch
address. My tests on K8 indicate that it is indexed by an 8-bit history and bits number 4-9 of
the address of the last byte of the branch instruction. This makes 16k entries if none of the
bits are combined. It is possible that some of the bits are XOR'ed with each other and/or
with part of the branch target address.

Branches that always go the same way do not pollute the global branch history register.
This is accomplished by the information stored in the branch selector block. A branch is
assumed to be not taken until the first time it is taken. After a branch has been taken for the
first time it is assumed always taken until next time it is not taken. After a branch has been
taken and then not taken it is tagged as needing dynamic prediction. It is then predicted
using the two-level adaptive algorithm with an 8 bit global history.

This mechanism makes it possible to predict loops with repeat counts up to 9 or 13 even if
they contain branches, as long as the branches always go the same way.

My tests on K8 indicate that the dynamic branch prediction fails much more often than what
can be expected from the design described above and that the pattern learning time can be
quite long. I have no explanation for this, but it is possible that the branch pattern history
table is smaller than indicated or that the mechanism is more complicated than described
here.

Return stack buffer
The return stack buffer has 12 entries in K8 and 24 entries in K10. This is more than
sufficient for normal applications except for recursive procedures. See page 27 for an
explanation of the return stack buffer.

Prediction of indirect branches
The K10 has a separate target buffer with 512 entries for indirect jumps and indirect calls. It
probably shares the 12-bit history counter with the two-way branches. Indirect jumps with
multiple target can thereby be predicted if they follow a regular pattern. Earlier processors
predict indirect jumps to always go the same way, as described below.

Literature:
The branch prediction mechanism is described in the following documents, though these
may not be accurate:

AMD Software Optimization Guide for AMD64 Processors, 2005, 2008.
Hans de Vries: Understanding the detailed Architecture of AMD's 64 bit Core, Chip
Architect, Sept. 21, 2003. www.chip-architect.com.
Andreas Kaiser: K7 Branch Prediction, 1999.
www.agner.org/optimize/KaiserK7BranchPrediction.pdf.
Talk at Stanford 2004 stanford-online.stanford.edu/courses/ee380/040107-ee380-100.asx.

http://www.chip-architect.com/
http://www.agner.org/optimize/AndreasKaiserK7BranchPrediction.pdf
http://stanford-online.stanford.edu/courses/ee380/040107-ee380-100.asx

 27

3.7 Indirect jumps on older processors
Indirect jumps, indirect calls, and returns may go to a different address each time. The
prediction method for an indirect jump or indirect call is, in processors older than PM and
K10, simply to predict that it will go to the same target as last time it was executed. The first
time an indirect jump or indirect call is seen, it is predicted to go to the immediately following
instruction. Therefore, an indirect jump or call should always be followed by valid code.
Don't place a list of jump addresses immediately after an indirect jump or call. Such a list
should preferably be placed in the data segment, rather than the code segment.

A multi-way branch (switch statement) is implemented either as an indirect jump using a
list of jump addresses, or as a tree of branch instructions. The indirect jump has the
disadvantage that it is poorly predicted on many processors, but the branch tree method
has other disadvantages, namely that it consumes more BTB entries and that many
processors have poor performance for consecutive branches.

3.8 Returns (all processors except P1)
A better method is used for returns. A Last-In-First-Out buffer, called the return stack buffer,
remembers the return address every time a call instruction is executed, and it uses this for
predicting where the corresponding return will go. This mechanism makes sure that return
instructions are correctly predicted when the same subroutine is called from several
different locations.

The P1 has no return stack buffer, but uses the same method for returns as for indirect
jumps. Later processors have a return stack buffer. The size of this buffer is 4 in the PMMX,
16 in PPro, P2, P3, P4, P4E, PM and Core2, 12 in AMD k8 and 24 in AMD k10. This size
may seem rather small, but it is sufficient in most cases because only the innermost
subroutines matter in terms of execution time. The return stack buffer may be insufficient,
though, in the case of a deeply nesting recursive function.

In order to make this mechanism work, you must make sure that all calls are matched with
returns. Never jump out of a subroutine without a return and never use a return as an
indirect jump. It is OK, however, to replace a CALL MYPROC / RET sequence with JMP
MYPROC in 16 and 32 bit mode. In 64 bit mode, obeying the stack alignment standard, you
can replace SUB RSP,8 / CALL MYPROC / ADD RSP,8 / RET with JMP MYPROC.

On P4, P4E, PM and AMD processors, you must make sure that far calls are matched with
far returns and near calls with near returns. This may be problematic because the
assembler will replace a far call to a procedure in the same segment with PUSH CS
followed by a near call. Even if you prevent the assembler from doing this by hard-coding
the far call, the linker is likely to translate the far call to PUSH CS and a near call. Use the
/NOFARCALLTRANSLATION option in the linker to prevent this. It is recommended to use
a small or flat memory model so that you don't need far calls, because far calls and returns
are expensive anyway.

3.9 Static prediction
The first time a branch instruction is seen, a prediction is made according to the principles of
static prediction.

Static prediction in P1 and PMMX
A control transfer instruction which has not been seen before or which is not in the branch
target buffer (BTB) is always predicted to fall through on the P1 and PMMX.

A branch instruction will not get a BTB entry if it always falls through. As soon as it is taken
once, it will get into the BTB. On the PMMX, it will stay in the BTB no matter how many

 28

times it falls through. Any control transfer instruction which jumps to the address
immediately following itself will not get a BTB entry and will therefore always have a
misprediction penalty.

Static prediction in PPro, P2, P3, P4, P4E
On PPro, P2, P3, P4 and P4E, a control transfer instruction which has not been seen
before, or which is not in the BTB, is predicted to fall through if it goes forwards, and to be
taken if it goes backwards (e.g. a loop). Static prediction takes longer time than dynamic
prediction on these processors.

On the P4 and P4E, you can change the static prediction by adding prediction hint prefixes.
The prefix 3EH will make the branch predicted taken the first time, and prefix 2EH will make
it predicted not taken the first time. These prefixes can be coded in this way:

; Example 3.6. P4/P4E static branch prediction hint
DB 3EH ; Prediction hint prefix
JBE LL ; Predicted taken first time

The prediction hint prefixes are in fact segment prefixes, which have no effect and cause no
harm on other processors.

It is rarely worth the effort to take static prediction into account. Almost any branch that is
executed sufficiently often for its timing to have any significant effect is likely to stay in the
BTB so that only the dynamic prediction counts. Static prediction only has a significant
effect if context switches or task switches occur very often.

Normally you don't have to care about the penalty of static mispredictions. It is more
important to organize branches so that the most common path is not taken, because this
improves code prefetching, trace cache use, and retirement.

Static prediction does have an influence on the way traces are organized in a trace cache,
but this is not a lasting effect because traces may be reorganized after several iterations.

Static prediction in PM and Core2
These processors do not use static prediction. The predictor simply makes a random
prediction the first time a branch is seen, depending on what happens to be in the BTB entry
that is assigned to the new branch. There is simply a 50% chance of making the right
prediction of jump or no jump, but the predicted target is correct. Branch hint prefixes have
no useful effect on PM and Core2 processors.

Static prediction in AMD
A branch is predicted not taken the first time it is seen. A branch is predicted always taken
after the first time it has been taken. Dynamic prediction is used only after a branch has
been taken and then not taken. Branch hint prefixes have no effect.

3.10 Close jumps

Close jumps on PMMX
On the PMMX, there is a risk that two control transfer instructions will share the same BTB
entry if they are too close to each other. The obvious result is that they will always be
mispredicted. The BTB entry for a control transfer instruction is identified by bits 2-31 of the
address of the last byte in the instruction. If two control transfer instructions are so close
together that they differ only in bits 0-1 of the address, then we have the problem of a
shared BTB entry. The RET instruction is particularly prone to this problem because it is only
one byte long. There are various ways to solve this problem:

 29

1. Move the code sequence a little up or down in memory so that you get a DWORD
boundary between the two addresses.

2. Change a short jump to a near jump (with 4 bytes displacement) so that the end of the
instruction is moved further down. There is no way you can force the assembler to use
anything but the shortest form of an instruction so you have to hard-code the near jump
if you choose this solution.

3. Put in some instruction between the two control transfer instructions. This is the easiest
method, and the only method if you don't know where DWORD boundaries are because
your segment is not DWORD aligned or because the code keeps moving up and down
as you make changes in the preceding code.

There is a penalty when the first instruction pair following the target label of a call contains
another call instruction or if a return follows immediately after another return.

The penalty for chained calls only occurs when the same subroutines are called from more
than one location. Chained returns always have a penalty. There is sometimes a small stall
for a jump after a call, but no penalty for return after call; call after return; jump, call, or
return after jump; or jump after return.

Chained jumps on PPro, P2 and P3
A jump, call, or return cannot be executed in the first clock cycle after a previous jump, call,
or return on the PPro, P2 and P3. Therefore, chained jumps will take two clock cycles for
each jump, and you may want to make sure that the processor has something else to do in
parallel. For the same reason, a loop will take at least two clock cycles per iteration on these
processors.

Chained jumps on P4, P4E and PM
The retirement station can handle only one taken jump, call or return per clock cycle, and
only in the first of the three retirement slots. Therefore, preferably, no more than every third
µop should be a jump.

Chained jumps on AMD
Taken jumps have a throughput of one jump per two clock cycles. It is delayed another
clock cycle if there is a 16-byte boundary shortly after the jump target. Not taken branches
have a throughput of three per clock cycle. Avoid a one-byte return instruction immediately
after a branch instruction.

 30

4 Pentium 1 and Pentium MMX pipeline
The P1 and PMMX processors cannot do out-of-order processing. But they can execute two
consecutive instructions simultaneously by an instruction pairing mechanism described
below.

4.1 Pairing integer instructions

Perfect pairing
The P1 and PMMX have two pipelines for executing instructions, called the U-pipe and the
V-pipe. Under certain conditions it is possible to execute two instructions simultaneously,
one in the U-pipe and one in the V-pipe. This can almost double the speed. It is therefore
advantageous to reorder the instructions to make them pair.

The following instructions are pairable in either pipe:

• MOV register, memory, or immediate into register or memory
• PUSH register or immediate, POP register
• LEA, NOP
• INC, DEC, ADD, SUB, CMP, AND, OR, XOR,
• and some forms of TEST (See manual 4: "Instruction tables").

The following instructions are pairable in the U-pipe only:

• ADC, SBB
• SHR, SAR, SHL, SAL with immediate count
• ROR, ROL, RCR, RCL with an immediate count of 1

The following instructions can execute in either pipe but are only pairable when in the V-
pipe:

• near call
• short and near jump
• short and near conditional jump.

All other integer instructions can execute in the U-pipe only, and are not pairable.

Two consecutive instructions will pair when the following conditions are met:

1. The first instruction is pairable in the U-pipe and the second instruction is pairable in the
V-pipe.

2. The second instruction does not read or write a register which the first instruction writes
to.

Examples:

; Example 4.1a. P1/PMMX pairing rules
mov eax, ebx / mov ecx, eax ; Read after write, do not pair
mov eax, 1 / mov eax, 2 ; Write after write, do not pair
mov ebx, eax / mov eax, 2 ; Write after read, pair ok
mov ebx, eax / mov ecx, eax ; Read after read, pair ok
mov ebx, eax / inc eax ; Read and write after read, pair ok

3. In rule 2, partial registers are treated as full registers. Example:

; Example 4.1b. P1/PMMX pairing rules
mov al, bl / mov ah, 0

 31

writes to different parts of the same register, do not pair.

4. Two instructions which both write to parts of the flags register can pair despite rule 2
and 3. Example:

; Example 4.1c. P1/PMMX pairing rules
shr eax, 4 / inc ebx ; pair OK

5. An instruction that writes to the flags can pair with a conditional jump despite rule 2.
Example:

; Example 4.1d. P1/PMMX pairing rules
cmp eax, 2 / ja LabelBigger ; pair OK

6. The following instruction combinations can pair despite the fact that they both modify the
stack pointer:

; Example 4.1e. P1/PMMX pairing rules
push + push, push + call, pop + pop

7. There are restrictions on the pairing of instructions with prefixes. Many instructions which
were not implemented on the 8086 processor have a two-byte opcode where the first byte is
0FH. The 0FH byte behaves as a prefix on the P1. On PMMX and later processors the 0FH
byte behaves as part of the opcode. The most common instructions with 0FH prefix are:
MOVZX, MOVSX, PUSH FS, POP FS, PUSH GS, POP GS, LFS, LGS, LSS, SETcc, BT, BTC,
BTR, BTS, BSF, BSR, SHLD, SHRD, and IMUL with two operands and no immediate operand.

On the P1, a prefixed instruction can execute only in the U-pipe, except for conditional near
jumps.

On the PMMX, instructions with operand size or address size prefix can execute in either
pipe, whereas instructions with segment, repeat, or lock prefix can execute only in the U-
pipe.

8. An instruction which has both a displacement and immediate data is not pairable on the
P1 and only pairable in the U-pipe on the PMMX:

; Example 4.1f. P1/PMMX pairing rules
mov dword ptr ds:[1000], 0 ; Not pairable or only in u-pipe
cmp byte ptr [ebx+8], 1 ; Not pairable or only in u-pipe
cmp byte ptr [ebx], 1 ; Pairable
cmp byte ptr [ebx+8], al ; Pairable

Another problem with instructions which have both a displacement and immediate data on
the PMMX is that such instructions may be longer than 7 bytes, which means that only one
instruction can be decoded per clock cycle.

9. Both instructions must be preloaded and decoded. This will not happen on the P1 unless
the first instruction is only one byte long.

10. There are special pairing rules for MMX instructions on the PMMX:

• MMX shift, pack or unpack instructions can execute in either pipe but cannot pair with
other MMX shift, pack or unpack instructions.

• MMX multiply instructions can execute in either pipe but cannot pair with other MMX
multiply instructions. They take 3 clock cycles and the last 2 clock cycles can overlap
with subsequent instructions in the same way as floating point instructions can (see

 32

page 36).

• an MMX instruction that accesses memory or integer registers can execute only in the
U-pipe and cannot pair with a non-MMX instruction.

Imperfect pairing
There are situations where the two instructions in a pair will not execute simultaneously, or
only partially overlap in time. They should still be considered a pair, though, because the
first instruction executes in the U-pipe, and the second in the V-pipe. No subsequent
instruction can start to execute before both instructions in the imperfect pair have finished.

Imperfect pairing will happen in the following cases:

1. If the second instruction suffers an AGI stall (see page 34).

2. Two instructions cannot access the same DWORD of memory simultaneously.
The following examples assume that ESI is divisible by 4:

; Example 4.2a. P1/PMMX imperfect pairing
mov al, [esi] / mov bl, [esi+1]

The two operands are within the same DWORD, so they cannot execute simultaneously.
The pair takes 2 clock cycles.

; Example 4.2b. P1/PMMX perfect pairing
mov al, [esi+3] / mov bl, [esi+4]

Here the two operands are on each side of a DWORD boundary, so they pair perfectly, and
take only one clock cycle.

3. The preceding rule is extended to the case where bits 2 - 4 are the same in the two
addresses (cache line conflict). For DWORD addresses this means that the difference
between the two addresses should not be divisible by 32.

Pairable integer instructions, which do not access memory, take one clock cycle to execute,
except for mispredicted jumps. MOV instructions to or from memory also take only one clock
cycle if the data area is in the cache and properly aligned. There is no speed penalty for
using complex addressing modes such as scaled index registers.

A pairable integer instruction that reads from memory, does some calculation, and stores
the result in a register or flags, takes 2 clock cycles. (read/modify instructions).

A pairable integer instruction that reads from memory, does some calculation, and writes
the result back to the memory, takes 3 clock cycles. (read/modify/write instructions).

4. If a read/modify/write instruction is paired with a read/modify or read/modify/write
instruction, then they will pair imperfectly.

The number of clock cycles used is given in the following table:

First instruction Second instruction
 MOV or register only read/modify read/modify/write
MOV or register only 1 2 3
read/modify 2 2 3
read/modify/write 3 4 5
Table 4.1. Pairing complex instructions

 33

Examples:

; Example 4.3. P1/PMMX pairing complex instructions
add [mem1], eax / add ebx, [mem2] ; 4 clock cycles
add ebx, [mem2] / add [mem1], eax ; 3 clock cycles

5. When two paired instructions both take extra time due to cache misses, misalignment, or
jump misprediction, then the pair will take more time than each instruction, but less than the
sum of the two.

6. A pairable floating point instruction followed by FXCH will make imperfect pairing if the
next instruction is not a floating point instruction.

In order to avoid imperfect pairing you have to know which instructions go into the U-pipe,
and which to the V-pipe. You can find out this by looking backwards in your code and
search for instructions which are unpairable, pairable only in one of the pipes, or cannot pair
due to one of the rules above.

Imperfect pairing can often be avoided by reordering instructions. Example:

; Example 4.4. P1/PMMX reorder instructions to improve pairing
L1: mov eax,[esi]
 mov ebx,[esi]
 inc ecx

Here the two MOV instructions form an imperfect pair because they both access the same
memory location, and the sequence takes 3 clock cycles. You can improve the code by
reordering the instructions so that INC ECX pairs with one of the MOV instructions.

; Example 4.5. P1/PMMX reorder instructions to improve pairing
L2: mov eax,offset a
 xor ebx,ebx
 inc ebx
 mov ecx,[eax]
 jmp L1

The pair INC EBX / MOV ECX,[EAX] is imperfect because the latter instruction has an AGI
stall. The sequence takes 4 clocks. If you insert a NOP or any other instruction so that MOV
ECX,[EAX] pairs with JMP L1 instead, then the sequence takes only 3 clocks.

The next example is in 16-bit mode, assuming that SP is divisible by 4:

; Example 4.6. P1/PMMX imperfect pairing, 16 bit mode
L3: push ax
 push bx
 push cx
 push dx
 call Func

Here the PUSH instructions form two imperfect pairs, because both operands in each pair go
into the same DWORD of memory. PUSH BX could possibly pair perfectly with PUSH CX
(because they go on each side of a DWORD boundary) but it doesn't because it has already
been paired with PUSH AX. The sequence therefore takes 5 clocks. If you insert a NOP or
any other instruction so that PUSH BX pairs with PUSH CX, and PUSH DX with CALL FUNC,
then the sequence will take only 3 clocks. Another way to solve the problem is to make sure
that SP is not divisible by 4. Knowing whether SP is divisible by 4 or not in 16-bit mode can
be difficult, so the best way to avoid this problem is to use 32-bit mode.

 34

4.2 Address generation interlock
It takes one clock cycle to calculate the address needed by an instruction that accesses
memory. Normally, this calculation is done at a separate stage in the pipeline while the
preceding instruction or instruction pair is executing. But if the address depends on the
result of an instruction executing in the preceding clock cycle, then we have to wait an extra
clock cycle for the address to be calculated. This is called an AGI stall.

; Example 4.7a. P1/PMMX AGI
add ebx,4
mov eax,[ebx] ; AGI stall

The stall in this example can be removed by putting some other instructions in between
these two, or by rewriting the code to:

; Example 4.7b. P1/PMMX AGI removed
mov eax,[ebx+4]
add ebx,4

You can also get an AGI stall with instructions that use ESP implicitly for addressing, such
as PUSH, POP, CALL, and RET, if ESP has been changed in the preceding clock cycle by
instructions such as MOV, ADD, or SUB. The P1 and PMMX have special circuitry to predict
the value of ESP after a stack operation so that you do not get an AGI delay after changing
ESP with PUSH, POP, or CALL. You can get an AGI stall after RET only if it has an immediate
operand to add to ESP. Examples:

; Example 4.8. P1/PMMX AGI
add esp,4 / pop esi ; AGI stall
pop eax / pop esi ; no stall, pair
mov esp,ebp / ret ; AGI stall
call F1 / F1: mov eax,[esp+8] ; no stall
ret / pop eax ; no stall
ret 8 / pop eax ; AGI stall

The LEA instruction is also subject to an AGI stall if it uses a base or index register that has
been changed in the preceding clock cycle. Example:

; Example 4.9. P1/PMMX AGI
inc esi / lea eax,[ebx+4*esi] ; AGI stall

PPro, P2 and P3 have no AGI stalls for memory reads and LEA, but they do have AGI stalls
for memory writes. This is not very significant unless the subsequent code has to wait for
the write to finish.

4.3 Splitting complex instructions into simpler ones
You may split up read/modify and read/modify/write instructions to improve pairing.
Example:

; Example 4.10a. P1/PMMX Imperfect pairing
add [mem1],eax
add [mem2],ebx

This code may be split up into a sequence that reduces the clock count from 5 to 3 clock
cycles:

; Example 4.10b. P1/PMMX Imperfect pairing avoided
mov ecx,[mem1]
mov edx,[mem2]
add ecx,eax

 35

add edx,ebx
mov [mem1],ecx
mov [mem2],edx

Likewise you may split up non-pairable instructions into pairable instructions:

; Example 4.11a. P1/PMMX Non-pairable instructions
push [mem1]
push [mem2] ; Non-pairable

Split up into:

; Example 4.11b. Split nonpairable instructions into pairable ones
mov eax,[mem1]
mov ebx,[mem2]
push eax
push ebx ; Everything pairs

Other examples of non-pairable instructions that may be split up into simpler pairable
instructions:

; Example 4.12. P1/PMMX Split non-pairable instructions

CDQ split into: mov edx,eax / sar edx,31
not eax change to xor eax,-1
neg eax split into xor eax,-1 / inc eax
movzx eax,byte ptr [mem] split into xor eax,eax / mov al,byte ptr [mem]
jecxz L1 split into test ecx,ecx / jz L1
loop L1 split into dec ecx, / jnz L1
xlat change to mov al,[ebx+eax]

If splitting instructions does not improve speed, then you may keep the complex or
nonpairable instructions in order to reduce code size. Splitting instructions is not needed on
later processors, except when the split instructions generate fewer µops.

4.4 Prefixes
An instruction with one or more prefixes may not be able to execute in the V-pipe and it may
take more than one clock cycle to decode.

On the P1, the decoding delay is one clock cycle for each prefix except for the 0FH prefix of
conditional near jumps.

The PMMX has no decoding delay for 0FH prefix. Segment and repeat prefixes take one
clock extra to decode. Address and operand size prefixes take two clocks extra to decode.
The PMMX can decode two instructions per clock cycle if the first instruction has a segment
or repeat prefix or no prefix, and the second instruction has no prefix. Instructions with
address or operand size prefixes can only decode alone on the PMMX. Instructions with
more than one prefix take one clock extra for each prefix.

Where prefixes are unavoidable, the decoding delay may be masked if a preceding
instruction takes more than one clock cycle to execute. The rule for the P1 is that any
instruction that takes N clock cycles to execute (not to decode) can 'overshadow' the
decoding delay of N-1 prefixes in the next two (sometimes three) instructions or instruction
pairs. In other words, each extra clock cycle that an instruction takes to execute can be
used to decode one prefix in a later instruction. This shadowing effect even extends across
a predicted branch. Any instruction that takes more than one clock cycle to execute, and
any instruction that is delayed because of an AGI stall, cache miss, misalignment, or any
other reason except decoding delay and branch misprediction, has such a shadowing effect.

 36

The PMMX has a similar shadowing effect, but the mechanism is different. Decoded
instructions are stored in a transparent first-in-first-out (FIFO) buffer, which can hold up to
four instructions. As long as there are instructions in the FIFO buffer you get no delay.
When the buffer is empty then instructions are executed as soon as they are decoded. The
buffer is filled when instructions are decoded faster than they are executed, i.e. when you
have unpaired or multi-cycle instructions. The FIFO buffer is emptied when instructions
execute faster than they are decoded, i.e. when you have decoding delays due to prefixes.
The FIFO buffer is empty after a mispredicted branch. The FIFO buffer can receive two
instructions per clock cycle provided that the second instruction is without prefixes and none
of the instructions are longer than 7 bytes. The two execution pipelines (U and V) can each
receive one instruction per clock cycle from the FIFO buffer. Examples:

; Example 4.13. P1/PMMX Overshadow prefix decoding delay
cld
rep movsd

The CLD instruction takes two clock cycles and can therefore overshadow the decoding
delay of the REP prefix. The code would take one clock cycle more if the CLD instruction
were placed far from the REP MOVSD.

; Example 4.14. P1 Overshadow prefix decoding delay
cmp dword ptr [ebx],0
mov eax,0
setnz al

The CMP instruction takes two clock cycles here because it is a read/modify instruction. The
0FH prefix of the SETNZ instruction is decoded during the second clock cycle of the CMP
instruction, so that the decoding delay is hidden on the P1 (The PMMX has no decoding
delay for the 0FH).

4.5 Scheduling floating point code
Floating point instructions cannot pair the way integer instructions can, except for one
special case, defined by the following rules:

• The first instruction (executing in the U-pipe) must be FLD, FADD, FSUB, FMUL, FDIV,
FCOM, FCHS, or FABS.

• The second instruction (in V-pipe) must be FXCH.

• The instruction following the FXCH must be a floating point instruction, otherwise the
FXCH will pair imperfectly and take an extra clock cycle.

This special pairing is important, as will be explained shortly.

While floating point instructions in general cannot be paired, many can be pipelined, i.e. one
instruction can begin before the previous instruction has finished. Example:

; Example 4.15. Pipelined floating point instructions
 fadd st(1),st(0) ; Clock cycle 1-3
 fadd st(2),st(0) ; Clock cycle 2-4
 fadd st(3),st(0) ; Clock cycle 3-5
 fadd st(4),st(0) ; Clock cycle 4-6

Obviously, two instructions cannot overlap if the second instruction needs the result of the
first one. Since almost all floating point instructions involve the top of stack register, ST(0),

 37

there are seemingly not very many possibilities for making an instruction independent of the
result of previous instructions. The solution to this problem is register renaming. The FXCH
instruction does not in reality swap the contents of two registers; it only swaps their names.
Instructions that push or pop the register stack also work by renaming. Floating point
register renaming has been highly optimized on the Pentiums so that a register may be
renamed while in use. Register renaming never causes stalls - it is even possible to rename
a register more than once in the same clock cycle, as for example when FLD or FCOMPP is
paired with FXCH.

By the proper use of FXCH instructions you may obtain a lot of overlapping in your floating
point code. All versions of the instructions FADD, FSUB, FMUL, and FILD take 3 clock cycles
and are able to overlap, so that these instructions may be scheduled. Using a memory
operand does not take more time than a register operand if the memory operand is in the
level 1 cache and properly aligned.

By now you must be used to rules having exceptions, and the overlapping rule is no
exception: You cannot start an FMUL instruction one clock cycle after another FMUL
instruction, because the FMUL circuitry is not perfectly pipelined. It is recommended that you
put another instruction in between two FMUL's. Example:

; Example 4.16a. Floating point code with stalls
 fld [a1] ; Clock cycle 1
 fld [b1] ; Clock cycle 2
 fld [c1] ; Clock cycle 3
 fxch st(2) ; Clock cycle 3
 fmul [a2] ; Clock cycle 4-6
 fxch st(1) ; Clock cycle 4
 fmul [b2] ; Clock cycle 5-7 (stall)
 fxch st(2) ; Clock cycle 5
 fmul [c2] ; Clock cycle 7-9 (stall)
 fxch st(1) ; Clock cycle 7
 fstp [a3] ; Clock cycle 8-9
 fxch st(1) ; Clock cycle 10 (unpaired)
 fstp [b3] ; Clock cycle 11-12
 fstp [c3] ; Clock cycle 13-14

Here you have a stall before FMUL [b2] and before FMUL [c2] because another FMUL
started in the preceding clock cycle. You can improve this code by putting FLD instructions
in between the FMUL's:

; Example 4.16b. Floating point stalls filled with other instructions
 fld [a1] ; Clock cycle 1
 fmul [a2] ; Clock cycle 2-4
 fld [b1] ; Clock cycle 3
 fmul [b2] ; Clock cycle 4-6
 fld [c1] ; Clock cycle 5
 fmul [c2] ; Clock cycle 6-8
 fxch st(2) ; Clock cycle 6
 fstp [a3] ; Clock cycle 7-8
 fstp [b3] ; Clock cycle 9-10
 fstp [c3] ; Clock cycle 11-12

In other cases you may put FADD, FSUB, or anything else in between FMUL's to avoid the
stalls.

Not all floating point instructions can overlap. And some floating point instructions can
overlap more subsequent integer instructions than subsequent floating point instructions.
The FDIV instruction, for example, takes 39 clock cycles. All but the first clock cycle can
overlap with integer instructions, but only the last two clock cycles can overlap with floating

 38

point instructions. A complete listing of floating point instructions, and what they can pair or
overlap with, is given in manual 4: "Instruction tables".

There is no penalty for using a memory operand on floating point instructions because the
arithmetic unit is one stage later in the pipeline than the read unit. The tradeoff of this comes
when a floating point value is stored to memory. The FST or FSTP instruction with a memory
operand takes two clock cycles in the execution stage, but it needs the data one clock
earlier so you will get a one-clock stall if the value to store is not ready one clock cycle in
advance. This is analogous to an AGI stall. In many cases you cannot hide this type of stall
without scheduling the floating point code into four threads or putting some integer
instructions in between. The two clock cycles in the execution stage of the FST(P)
instruction cannot pair or overlap with any subsequent instructions.

Instructions with integer operands such as FIADD, FISUB, FIMUL, FIDIV, FICOM may be
split up into simpler operations in order to improve overlapping. Example:

; Example 4.17a. Floating point code with integer operands
fild [a]
fimul [b]

Split up into:

; Example 4.17b. Overlapping integer operations
fild [a]
fild [b]
fmul

In this example, we save two clocks by overlapping the two FILD instructions.

 39

5 Pentium Pro, II and III pipeline

5.1 The pipeline in PPro, P2 and P3
The pipeline of the PPro, P2 and P3 microprocessors is explained in various manuals and
tutorials from Intel, which unfortunately are no longer available. I will therefore explain the
pipeline here.

Figure 5.1. Pentium Pro pipeline.

The pipeline is illustrated in fig. 5.1. The pipeline stages are as follows:

BTB0,1: Branch prediction. Tells where to fetch the next instructions from.
IFU0,1,2: Instruction fetch unit.
ID0,1: Instruction decoder.
RAT: Register alias table. Register renaming.
ROB Rd: µop re-ordering buffer read.
RS: Reservation station.
Port0,1,2,3,4: Ports connecting to execution units.
ROB wb: Write-back of results to re-order buffer.
RRF: Register retirement file.

Each stage in the pipeline takes at least one clock cycle. The branch prediction has been
explained on p. 18. The other stages in the pipeline will be explained below (Literature: Intel
Architecture Optimization Manual, 1997).

5.2 Instruction fetch
Instruction codes are fetched from the code cache in aligned 16-byte chunks into a double
buffer that can hold two 16-byte chunks. The purpose of the double buffer is to make it
possible to decode an instruction that crosses a 16-byte boundary (i.e. an address divisible
by 16). The code is passed on from the double buffer to the decoders in blocks which I will
call IFETCH blocks (instruction fetch blocks). The IFETCH blocks are up to 16 bytes long. In
most cases, the instruction fetch unit makes each IFETCH block start at an instruction
boundary rather than a 16-byte boundary. However, the instruction fetch unit needs
information from the instruction length decoder in order to know where the instruction
boundaries are. If this information is not available in time then it may start an IFETCH block
at a 16-byte boundary. This complication will be discussed in more detail below.

The double buffer is not big enough for handling fetches around jumps without delay. If the
IFETCH block that contains the jump instruction crosses a 16-byte boundary, then the
double buffer needs to keep two consecutive aligned 16-bytes chunks of code in order to
generate it. If the first instruction after the jump crosses a 16-byte boundary, then the double
buffer needs to load two new 16-bytes chunks of code before a valid IFETCH block can be
generated. This means that, in the worst case, the decoding of the first instruction after a
jump can be delayed for two clock cycles. There is a one clock penalty for a 16-byte
boundary in the IFETCH block containing the jump instruction, and also a one clock penalty
for a 16-byte boundary in the first instruction after the jump. The instruction fetch unit can
fetch one 16-byte chunk per clock cycle. If it takes more than one clock cycle to decode an

 40

IFETCH block then it is possible to use this extra time for fetching ahead. This can
compensate for the penalties of 16-byte boundaries before and after jumps. The resulting
delays are summarized in table 5.1 below.

If the double buffer has time to fetch only one 16-byte chunk of code after the jump, then the
first IFETCH block after the jump will be identical to this chunk, that is, aligned to a 16-byte
boundary. In other words, the first IFETCH block after the jump will not begin at the first
instruction, but at the nearest preceding address divisible by 16. If the double buffer has had
time to load two 16-byte chunks, then the new IFETCH block can cross a 16-byte boundary
and begin at the first instruction after the jump. These rules are summarized in the following
table:

Number of decode
groups in IFETCH
block containing

jump

16-byte boundary
in this IFETCH

block

16-byte boundary in
first instruction after

jump decoder delay

alignment of first
IFETCH after

jump
1 0 0 0 by 16
1 0 1 1 to instruction
1 1 0 1 by 16
1 1 1 2 to instruction
2 0 0 0 to instruction
2 0 1 0 to instruction
2 1 0 0 by 16
2 1 1 1 to instruction

3 or more 0 0 0 to instruction
3 or more 0 1 0 to instruction
3 or more 1 0 0 to instruction
3 or more 1 1 0 to instruction

Table 5.1. Instruction fetching around jumps

The first column in this table indicates the time it takes to decode all instructions in an
IFETCH block (Decode groups are explained below).

Instructions can have any length from 1 to 15 bytes. Therefore, we cannot be sure that a 16-
byte IFETCH block contains a whole number of instructions. If an instruction extends past
the end of an IFETCH block then it will go into the next IFETCH block, which will begin at
the first byte of this instruction. Therefore, the instruction fetch unit needs to know where the
last full instruction in each IFETCH block ends before it can generate the next IFETCH
block. This information is generated by the instruction length decoder, which is in stage
IFU2 in the pipeline (fig. 5.1). The instruction length decoder can determine the lengths of
three instructions per clock cycle. If, for example, an IFETCH block contains ten instructions
then it will take three clock cycles before it is known where the last full instruction in the
IFETCH block ends and before the next IFETCH block can be generated.

5.3 Instruction decoding

Instruction length decoding
The IFETCH blocks go to the instruction length decoder, which determines where each
instruction begins and ends. This is a very critical stage in the pipeline because it limits the
degree of parallelism that can be achieved. We want to fetch more than one instruction per
clock cycle, decode more than one instruction per clock cycle, and execute more than one
µop per clock cycle in order to gain speed. But decoding instructions in parallel is difficult
when instructions have different lengths. You need to decode the first instruction in order to
know how long it is and where the second instruction begins before you can start to decode

 41

the second instruction. So a simple instruction length decoder would only be able to handle
one instruction per clock cycle. The instruction length decoder in the PPro microarchitecture
can determine the lengths of three instructions per clock cycle and even feed back this
information to the instruction fetch unit early enough for a new IFETCH block to be
generated for the instruction length decoder to work on in the next clock cycle. This is quite
an impressive accomplishment, which I believe is achieved by tentatively decoding all 16
possible start addresses in parallel.

The 4-1-1 rule
After the instruction length decoder comes the instruction decoders which translate
instructions into µops. There are three decoders working in parallel so that up to three
instructions can be decoded in every clock cycle. A group of up to three instructions that are
decoded in the same clock cycle is called a decode group. The three decoders are called
D0, D1, and D2. D0 can handle all instructions and can generate up to 4 µops per clock
cycle. D1 and D2 can only handle simple instructions that generate no more than one µop
each and are no more than 8 bytes long. The first instruction in an IFETCH block always
goes to D0. The next two instructions go to D1 and D2 if possible. If an instruction that
would go into D1 or D2 cannot be handled by these decoders because it generates more
than one µop or because it is more than 8 bytes long, then it has to wait until D0 is vacant.
The subsequent instructions are delayed as well. Example:

; Example 5.1a. Instruction decoding
mov [esi], eax ; 2 uops, D0
add ebx, [edi] ; 2 uops, D0
sub eax, 1 ; 1 uop, D1
cmp ebx, ecx ; 1 uop, D2
je L1 ; 1 uop, D0

The first instruction in this example goes to decoder D0. The second instruction cannot go
to D1 because it generates more than one µop. It is therefore delayed to the next clock
cycle when D0 is ready. The third instruction goes to D1 because the preceding instruction
goes to D0. The fourth instruction goes to D2. The last instruction goes to D0. The whole
sequence takes three clock cycles to decode. The decoding can be improved by swapping
the second and third instructions:

; Example 5.1b. Instructions reordered for improved decoding
mov [esi], eax ; 2 uops, D0
sub eax, 1 ; 1 uop, D1
add ebx, [edi] ; 2 uops, D0
cmp ebx, ecx ; 1 uop, D1
je L1 ; 1 uop, D2

Now the decoding takes only two clock cycles because of a better distribution of instructions
between the decoders.

The maximum decoding speed is obtained when instructions are ordered according to the
4-1-1 pattern: If every third instruction generates 4 µops and the next two instructions
generate 1 µop each then the decoders can generate 6 µops per clock cycle. A 2-2-2
pattern gives the minimum decoding speed of 2 µops per clock because all the 2-µop
instructions go to D0. It is recommended that you order instructions according to the 4-1-1
rule so that every instruction that generates 2, 3 or 4 µops is followed by two instructions
that generate 1 µop each. An instruction that generates more than 4 µops must go into D0.
It takes two or more clock cycles to decode, and no other instructions can decode in
parallel.

IFETCH block boundaries
A further complication is that the first instruction in an IFETCH block always goes into D0. If
the code has been scheduled according to the 4-1-1 rule and if one of the 1-µop instructions

 42

that was intended for D1 or D2 happens to be first in an IFETCH block, then that instruction
goes into D0 and the 4-1-1 pattern is broken. This will delay the coding for one clock cycle.
The instruction fetch unit cannot adjust the IFETCH boundaries to the 4-1-1 pattern because
the information about which instruction generates more than 1 µop is only available, I
suppose, two stages further down the pipeline.

This problem is difficult to handle because it is difficult to guess where the IFETCH
boundaries are. The best way to address this problem is to schedule the code so that the
decoders can generate more than 3 µops per clock cycle. The RAT and RRF stages in the
pipeline (fig. 5.1) can handle no more than 3 µops per clock. If instructions are ordered
according to the 4-1-1 rule so that we can expect at least 4 µops per clock cycle then maybe
we can afford to lose one clock cycle at every IFETCH boundary and still maintain an
average decoder throughput of no less than 3 µops per clock.

Another remedy is to make instructions as short as possible in order to get more instructions
into each IFETCH block. More instructions per IFETCH block means fewer IFETCH
boundaries and thus fewer breaks in the 4-1-1 pattern. For example, you may use pointers
instead of absolute addresses to reduce code size. See manual 2: "Optimizing subroutines
in assembly language" for more advices on how to reduce the size of instructions.

In some cases it is possible to manipulate the code so that instructions intended for decoder
D0 fall at the IFETCH boundaries. But it is usually quite difficult to determine where the
IFECTH boundaries are and probably not worth the effort. First you need to make the code
segment paragraph-aligned in order to know where the 16-byte boundaries are. Then you
have to know where the first IFETCH block of the code you want to optimize begins. Look at
the output listing from the assembler to see how long each instruction is. If you know where
one IFETCH block begins then you can find where the next IFETCH block begins in the
following way: Make the IFETCH block 16 bytes long. If it ends at an instruction boundary
then the next block will begin here. If it ends with an unfinished instruction then the next
block will begin at the beginning of this instruction. Only the lengths of the instructions count
here, it doesn't matter how many µops they generate or what they do. This way you can
work your way all through the code and mark where each IFETCH block begins. The
biggest problem is to know where to start. Here are some guidelines:

• The first IFETCH block after a jump, call, or return can begin either at the first
instruction or at the nearest preceding 16-byte boundary, according to table 5.1. If you
align the first instruction to begin at a 16-byte boundary then you can be sure that the
first IFETCH block begins here. You may want to align important subroutine entries
and loop entries by 16 for this purpose.

• If the combined length of two consecutive instructions is more than 16 bytes then you
can be certain that the second one doesn't fit into the same IFETCH block as the first
one, and consequently you will always have an IFETCH block beginning at the second
instruction. You can use this as a starting point for finding where subsequent IFETCH
blocks begin.

• The first IFETCH block after a branch misprediction begins at a 16-byte boundary. As
explained on page 18, a loop that repeats more than 5 times will always have a
misprediction when it exits. The first IFETCH block after such a loop will therefore
begin at the nearest preceding 16-byte boundary.

I am sure you want an example now:

; Example 5.2. Instruction fetch blocks
address instruction length uops expected decoder

1000h mov ecx, 1000 5 1 D0
1005h LL: mov [esi], eax 2 2 D0

 43

1007h mov [mem], 0 10 2 D0
1011h lea ebx, [eax+200] 6 1 D1
1017h mov byte ptr [esi], 0 3 2 D0
101Ah bsr edx, eax 3 2 D0
101Dh mov byte ptr [esi+1],0 4 2 D0
1021h dec edx 1 1 D1
1022h jnz LL 2 1 D2

Let's assume that the first IFETCH block begins at address 1000h and ends at 1010h. This
is before the end of the MOV [MEM],0 instruction so the next IFETCH block will begin at
1007h and end at 1017h. This is at an instruction boundary so the third IFETCH block will
begin at 1017h and cover the rest of the loop. The number of clock cycles it takes to decode
this is the number of D0 instructions, which is 5 per iteration of the LL loop. The last
IFETCH block contained three decode blocks covering the last five instructions, and it has
one 16-byte boundary (1020h). Looking at table 5.1 above we find that the first IFETCH
block after the jump will begin at the first instruction after the jump, that is the LL label at
1005h, and end at 1015h. This is before the end of the LEA instruction, so the next IFETCH
block will go from 1011h to 1021h, and the last one from 1021h covering the rest. Now the
LEA instruction and the DEC instruction both fall at the beginning of an IFETCH block which
forces them to go into D0. We now have 7 instructions in D0 and the loop takes 7 clocks to
decode in the second iteration. The last IFETCH block contains only one decode group
(DEC ECX / JNZ LL) and has no 16-byte boundary. According to table 5.1, the next
IFETCH block after the jump will begin at a 16-byte boundary, which is 1000h. This will give
us the same situation as in the first iteration, and you will see that the loop takes alternately
5 and 7 clock cycles to decode. Since there are no other bottlenecks, the complete loop will
take 6000 clocks to run 1000 iterations. If the starting address had been different so that
you had a 16-byte boundary in the first or the last instruction of the loop, then it would take
8000 clocks. If you reorder the loop so that no D1 or D2 instructions fall at the beginning of
an IFETCH block then you can make it take only 5000 clocks.

The example above was deliberately constructed so that fetch and decoding is the only
bottleneck. One thing that can be done to improve decoding is to change the starting
address of the procedure in order to avoid 16-byte boundaries where you don't want them.
Remember to make the code segment paragraph aligned so that you know where the
boundaries are. It may be possible to manipulate instruction lengths in order to put IFETCH
boundaries where you want them, as explained in the chapter "Making instructions longer
for the sake of alignment" in manual 2: "Optimizing subroutines in assembly language".

Instruction prefixes
Instruction prefixes can also incur penalties in the decoders. Instructions can have several
kinds of prefixes, as listed in manual 2: "Optimizing subroutines in assembly language".

1. An operand size prefix gives a penalty of a few clocks if the instruction has an immediate
operand of 16 or 32 bits because the length of the operand is changed by the prefix.
Examples (32-bit mode):

; Example 5.3a. Decoding instructions with operand size prefix
add bx, 9 ; No penalty because immediate operand is 8 bits
add bx, 200 ; Penalty for 16 bit immediate. Change to ADD EBX, 200
mov word ptr [mem16], 9 ; Penalty because operand is 16 bits

The last instruction may be changed to:

; Example 5.3b. Decoding instructions with operand size prefix
mov eax, 9
mov word ptr [mem16], ax ; No penalty because no immediate

2. An address size prefix gives a penalty whenever there is an explicit memory operand
(even when there is no displacement) because the interpretation of the r/m bits in the

 44

instruction code is changed by the prefix. Instructions with only implicit memory operands,
such as string instructions, have no penalty with address size prefix.

3. Segment prefixes give no penalty in the decoders.

4. Repeat prefixes and lock prefixes give no penalty in the decoders.

5. There is always a penalty if an instruction has more than one prefix. This penalty is
usually one clock per extra prefix.

5.4 Register renaming
Register renaming is controlled by the register alias table (RAT) shown in figure 5.1. The
µops from the decoders go to the RAT via a queue, and then to the ROB and the
reservation station. The RAT can handle 3 µops per clock cycle. This means that the overall
throughput of the microprocessor can never exceed 3 µops per clock cycle on average.

There is no practical limit to the number of renamings. The RAT can rename three registers
per clock cycle, and it can even rename the same register three times in one clock cycle.

This stage also calculates IP-relative branches and send them to the BTB0 stage.

5.5 ROB read
After the RAT comes the ROB-read stage where the values of the renamed registers are
stored in the ROB entry, if they are available. Each ROB entry can have up to two input
registers and two output registers. There are three possibilities for the value of an input
register:

1. The register has not been modified recently. The ROB-read stage reads the value
from the permanent register file and stores it in the ROB entry.

2. The value has been modified recently. The new value is the output of a µop that has
been executed but not yet retired. I assume that the ROB-read stage will read the
value from the not-yet-retired ROB entry and store it in the new ROB entry.

3. The value is not ready yet. The needed value is the coming output of a µop that is
queued but not yet executed. The new value cannot be written yet, but it will be
written to the new ROB entry by the execution unit as soon as it is ready.

Case 1 appears to be the least problematic situation. But quite surprisingly, this is the only
situation that can cause delays in the ROB-read stage. The reason is that the permanent
register file has only two read ports. The ROB-read stage can receive up to three µops from
the RAT in one clock cycle, and each µop can have two input registers. This gives a total of
up to six input registers. If these six registers are all different and all stored in the permanent
register file, then it will take three clock cycles to perform the six reads through the two read
ports of the register file. The preceding RAT stage will be stalled until the ROB-read is ready
again. The decoders and instruction fetch will also be stalled if the queue between the
decoders and the RAT is full. This queue has only approximately ten entries so it will quickly
be full.

The limitation of permanent register reads applies to all registers used by an instruction
except those registers that the instruction writes to only. Example:

; Example 5.4a. Register read stall
mov [edi + esi], eax
mov ebx, [esp + ebp]

 45

The first instruction generates two µops: one that reads EAX and one that reads EDI and
ESI. The second instruction generates one µop that reads ESP and EBP. EBX does not
count as a read because it is only written to by the instruction. Let's assume that these three
µops go through the RAT together. I will use the word triplet for a group of three consecutive
µops that go through the RAT together. Since the ROB can handle only two permanent
register reads per clock cycle and we need five register reads, our triplet will be delayed for
two extra clock cycles before it comes to the reservation station (RS). With 3 or 4 register
reads in the triplet it would be delayed by one clock cycle. The same register can be read
more than once in the same triplet without adding to the count. If the instructions above are
changed to:

; Example 5.4b. No register read stall
mov [edi + esi], edi
mov ebx, [edi + edi]

then we will need only two register reads (EDI and ESI) and the triplet will not be delayed.

Case 2 and 3 do not cause register read stalls. The ROB-read can read a register without
stall if it has not yet been through the ROB-writeback stage. It takes at least three clock
cycles to get from RAT to ROB-writeback, so you can be certain that a register written to in
one µop-triplet can be read without delay in at least the next three triplets. If the write-back
is delayed by reordering, slow instructions, dependence chains, cache misses, or by any
other kind of stall, then the register can be read without delay further down the instruction
stream. Example:

; Example 5.5. Register read stall
mov eax, ebx
sub ecx, eax
inc ebx
mov edx, [eax]
add esi, ebx
add edi, ecx

These 6 instructions generate 1 µop each. Let's assume that the first 3 µops go through the
RAT together. These 3 µops read register EBX, ECX, and EAX. But since we are writing to
EAX before reading it, the read is free and we get no stall. The next three µops read EAX,
ESI, EBX, EDI, and ECX. Since both EAX, EBX and ECX have been modified in the
preceding triplet and not yet written back then they can be read for free, so that only ESI
and EDI count, and we get no stall in the second triplet either. If the SUB ECX,EAX
instruction in the first triplet is changed to CMP ECX,EAX then ECX is not written to, and we
will get a stall in the second triplet for reading ESI, EDI and ECX. Similarly, if the INC EBX
instruction in the first triplet is changed to NOP or something else then we will get a stall in
the second triplet for reading ESI, EBX and EDI.

To count the number of register reads, you have to include all registers that are read by the
instruction. This includes integer registers, the flags register, the stack pointer, floating point
registers and MMX registers. An XMM register counts as two registers, except when only
part of it is used, as e.g. in ADDSS and MOVHLPS. Segment registers and the instruction
pointer do not count. For example, in SETZ AL you count the flags register but not AL. ADD
EBX,ECX counts both EBX and ECX, but not the flags because they are written to only. PUSH
EAX reads EAX and the stack pointer and then writes to the stack pointer.

The FXCH instruction is a special case. It works by renaming, but doesn't read any values so
that it doesn't count in the rules for register read stalls. An FXCH instruction generates a µop
that neither reads nor writes any registers with regard to the rules for register read stalls.

 46

Don't confuse µop triplets with decode groups. A decode group can generate from 1 to 6
µops, and even if the decode group has three instructions and generates three µops there is
no guarantee that the three µops will go into the RAT together.

The queue between the decoders and the RAT is so short (10 µops) that you cannot
assume that register read stalls do not stall the decoders or that fluctuations in decoder
throughput do not stall the RAT.

It is very difficult to predict which µops go through the RAT together unless the queue is
empty, and for optimized code the queue should be empty only after mispredicted branches.
Several µops generated by the same instruction do not necessarily go through the RAT
together; the µops are simply taken consecutively from the queue, three at a time. The
sequence is not broken by a predicted jump: µops before and after the jump can go through
the RAT together. Only a mispredicted jump will discard the queue and start over again so
that the next three µops are sure to go into the RAT together.

A register read stall can be detected by performance monitor counter number 0A2H, which
unfortunately cannot distinguish it from other kinds of resource stalls.

If three consecutive µops read more than two different registers then you would of course
prefer that they do not go through the RAT together. The probability that they do is one
third. The penalty of reading three or four written-back registers in one triplet of µops is one
clock cycle. You can think of the one clock delay as equivalent to the load of three more
µops through the RAT. With the probability of 1/3 of the three µops going into the RAT
together, the average penalty will be the equivalent of 3/3 = 1 µop. To calculate the average
time it will take for a piece of code to go through the RAT, add the number of potential
register read stalls to the number of µops and divide by three. You can see that it doesn't
pay to remove the stall by putting in an extra instruction unless you know for sure which
µops go into the RAT together or you can prevent more than one potential register read stall
by one extra instruction that writes to a critical register.

In situations where you aim at a throughput of 3 µops per clock, the limit of two permanent
register reads per clock cycle may be a problematic bottleneck to handle. Possible ways to
remove register read stalls are:

• Keep µops that read the same register close together so that they are likely to go
into the same triplet.

• Keep µops that read different registers spaced so that they cannot go into the same

triplet.

• Place µops that read a register no more than 9-12 µops after an instruction that
writes to or modifies this register to make sure it hasn't been written back before it is
read (it doesn't matter if you have a jump between as long as it is predicted). If you
have reason to expect the register write to be delayed for whatever reason then you
can safely read the register somewhat further down the instruction stream.

• Use absolute addresses instead of pointers in order to reduce the number of register

reads.

• You may rename a register in a triplet where it doesn't cause a stall in order to
prevent a read stall for this register in one or more later triplets. This method costs
an extra µop and therefore doesn't pay unless the expected average number of read
stalls prevented is more than 1/3.

 47

For instructions that generate more than one µop, you may want to know the order of the
µops generated by the instruction in order to make a precise analysis of the possibility of
register read stalls. I have therefore listed the most common cases below.

Writes to memory:
A memory write generates two µops. The first one (to port 4) is a store operation, reading
the register to store. The second µop (port 3) calculates the memory address, reading any
pointer registers. Example:

; Example 5.6. Register reads
fstp qword ptr [ebx+8*ecx]

The first µop reads ST(0), the second µop reads EBX and ECX.

Read and modify
An instruction that reads a memory operand and modifies a register by some arithmetic or
logic operation generates two µops. The first one (port 2) is a memory load instruction
reading any pointer registers, the second µop is an arithmetic instruction (port 0 or 1)
reading and writing to the destination register and possibly writing to the flags. Example:

; Example 5.7. Register reads
add eax, [esi+20]

The first µop reads ESI, the second µop reads EAX and writes EAX and flags.

Read / modify / write
A read / modify / write instruction generates four µops. The first µop (port 2) reads any
pointer registers, the second µop (port 0 or 1) reads and writes to any source register and
possibly writes to the flags, the third µop (port 4) reads only the temporary result that doesn't
count here, the fourth µop (port 3) reads any pointer registers again. Since the first and the
fourth µop cannot go into the RAT together, you cannot take advantage of the fact that they
read the same pointer registers. Example:

; Example 5.8. Register reads
or [esi+edi], eax

The first µop reads ESI and EDI, the second µop reads EAX and writes EAX and the flags,
the third µop reads only the temporary result, the fourth µop reads ESI and EDI again. No
matter how these µops go into the RAT you can be sure that the µop that reads EAX goes
together with one of the µops that read ESI and EDI. A register read stall is therefore
inevitable for this instruction unless one of the registers has been modified recently, for
example by MOV ESI,ESI.

Push register
A push register instruction generates 3 µops. The first one (port 4) is a store instruction,
reading the register. The second µop (port 3) generates the address, reading the stack
pointer. The third µop (port 0 or 1) subtracts the word size from the stack pointer, reading
and modifying the stack pointer.

Pop register
A pop register instruction generates 2 µops. The first µop (port 2) loads the value, reading
the stack pointer and writing to the register. The second µop (port 0 or 1) adjusts the stack
pointer, reading and modifying the stack pointer.

Call
A near call generates 4 µops (port 1, 4, 3, 01). The first two µops read only the instruction
pointer which doesn't count because it cannot be renamed. The third µop reads the stack
pointer. The last µop reads and modifies the stack pointer.

 48

Return
A near return generates 4 µops (port 2, 01, 01, 1). The first µop reads the stack pointer. The
third µop reads and modifies the stack pointer.

5.6 Out of order execution
The reorder buffer (ROB) can hold 40 µops and 40 temporary registers (fig. 5.1), while the
reservation station (RS) can hold 20 µops. Each µop waits in the ROB until all its operands
are ready and there is a vacant execution unit for it. This makes out-of-order execution
possible.

Writes to memory cannot execute out of order relative to other writes. There are four write
buffers, so if you expect many cache misses on writes or you are writing to uncached
memory then it is recommended that you schedule four writes at a time and make sure the
processor has something else to do before you give it the next four writes. Memory reads
and other instructions can execute out of order, except IN, OUT and serializing instructions.

If the code writes to a memory address and soon after reads from the same address, then
the read may by mistake be executed before the write because the ROB doesn't know the
memory addresses at the time of reordering. This error is detected when the write address
is calculated, and then the read operation (which was executed speculatively) has to be re-
done. The penalty for this is approximately 3 clocks. The best way to avoid this penalty is to
make sure the execution unit has other things to do between a write and a subsequent read
from the same memory address.

There are several execution units clustered around five ports. Port 0 and 1 are for arithmetic
operations etc. Simple move, arithmetic and logic operations can go to either port 0 or 1,
whichever is vacant first. Port 0 also handles multiplication, division, integer shifts and
rotates, and floating point operations. Port 1 also handles jumps and some MMX and XMM
operations. Port 2 handles all reads from memory and a few string and XMM operations,
port 3 calculates addresses for memory write, and port 4 executes all memory write
operations. A complete list of the µops generated by code instructions with an indication of
which ports they go to is contained in manual 4: "Instruction tables". Note that all memory
write operations require two µops, one for port 3 and one for port 4, while memory read
operations use only one µop (port 2).

In most cases, each port can receive one new µop per clock cycle. This means that we can
execute up to 5 µops in the same clock cycle if they go to five different ports, but since there
is a limit of 3 µops per clock earlier in the pipeline you will never execute more than 3 µops
per clock on average.

You must make sure that no execution port receives more than one third of the µops if you
want to maintain a throughput of 3 µops per clock. Use the table of µops in manual 4:
"Instruction tables" and count how many µops go to each port. If port 0 and 1 are saturated
while port 2 is free then you can improve your code by replacing some MOV
register,register or MOV register,immediate instructions with MOV
register,memory in order to move some of the load from port 0 and 1 to port 2.

Most µops take only one clock cycle to execute, but multiplications, divisions, and many
floating point operations take more. Floating point addition and subtraction takes 3 clocks,
but the execution unit is fully pipelined so that it can receive a new FADD or FSUB in every
clock cycle before the preceding ones are finished (provided, of course, that they are
independent).

Integer multiplication takes 4 clocks, floating point multiplication 5, and MMX multiplication 3
clocks. Integer and MMX multiplication is pipelined so that it can receive a new instruction

 49

every clock cycle. Floating point multiplication is partially pipelined: The execution unit can
receive a new FMUL instruction two clocks after the preceding one, so that the maximum
throughput is one FMUL per two clock cycles. The holes between the FMUL's cannot be filled
by integer multiplications because they use the same execution unit. XMM additions and
multiplications take 3 and 4 clocks respectively, and are fully pipelined. But since each
logical XMM register is implemented as two physical 64-bit registers, you need two µops for
a packed XMM operation, and the throughput will then be one arithmetic XMM instruction
every two clock cycles. XMM add and multiply instructions can execute in parallel because
they don't use the same execution port.

Integer and floating point division takes up to 39 clocks and is not pipelined. This means
that the execution unit cannot begin a new division until the previous division is finished.
The same applies to square root and transcendental functions.

You should, of course, avoid instructions that generate many µops. The LOOP XX
instruction, for example, should be replaced by DEC ECX / JNZ XX.

If you have consecutive POP instructions then you may break them up to reduce the number
of µops:

; Example 5.9a. Split up pop instructions
pop ecx
pop ebx
pop eax

Can be changed to:

; Example 5.9b. Split up pop instructions
mov ecx, [esp]
mov ebx, [esp+4]
mov eax, [esp+8]
add esp, 12

The former code generates 6 µops, the latter generates only 4 and decodes faster. Doing
the same with PUSH instructions is less advantageous because the split-up code is likely to
generate register read stalls unless you have other instructions to put in between or the
registers have been renamed recently. Doing it with CALL and RET instructions will interfere
with prediction in the return stack buffer. Note also that the ADD ESP instruction can cause
an AGI stall on earlier processors.

5.7 Retirement
Retirement is a process where the temporary registers used by the µops are copied into the
permanent registers EAX, EBX, etc. When a µop has been executed, it is marked in the ROB
as ready to retire.

The retirement station can handle three µops per clock cycle. This may not seem like a
problem because the throughput is already limited to 3 µops per clock in the RAT. But
retirement may still be a bottleneck for two reasons. Firstly, instructions must retire in order.
If a µop is executed out of order then it cannot retire before all preceding µops in the order
have retired. And the second limitation is that taken jumps must retire in the first of the three
slots in the retirement station. Just like decoder D1 and D2 can be idle if the next instruction
only fits into D0, the last two slots in the retirement station can be idle if the next µop to
retire is a taken jump. This is significant if you have a small loop where the number of µops
in the loop is not divisible by three.

All µops stay in the reorder buffer (ROB) until they retire. The ROB can hold 40 µops. This
sets a limit to the number of instructions that can execute during the long delay of a division

 50

or other slow operation. Before the division is finished the ROB will possibly be filled up with
executed µops waiting to retire. Only when the division is finished and retired can the
subsequent µops begin to retire, because retirement takes place in order.

In case of speculative execution of predicted branches (see page 18) the speculatively
executed µops cannot retire until it is certain that the prediction was correct. If the prediction
turns out to be wrong then the speculatively executed µops are discarded without
retirement.

The following instructions cannot execute speculatively: memory writes, IN, OUT, and
serializing instructions.

5.8 Partial register stalls
Partial register stall is a problem that occurs when we write to part of a 32-bit register and
later read from the whole register or a bigger part of it. Example:

; Example 5.10a. Partial register stall
mov al, byte ptr [mem8]
mov ebx, eax ; Partial register stall

This gives a delay of 5 - 6 clocks. The reason is that a temporary register has been
assigned to AL to make it independent of AH. The execution unit has to wait until the write to
AL has retired before it is possible to combine the value from AL with the value of the rest of
EAX. The stall can be avoided by changing to code to:

; Example 5.10b. Partial register stall removed
movzx ebx, byte ptr [mem8]
and eax, 0ffffff00h
or ebx, eax

Of course we can also avoid the partial stalls by putting in other instructions after the write
to the partial register so that it has time to retire before you read from the full register.

You should be aware of partial stalls whenever you mix different data sizes (8, 16, and 32
bits):

; Example 5.11. Partial register stalls
mov bh, 0
add bx, ax ; Stall
inc ebx ; Stall

We don't get a stall when reading a partial register after writing to the full register, or a
bigger part of it:

; Example 5.12. Partial register stalls
mov eax, [mem32]
add bl, al ; No stall
add bh, ah ; No stall
mov cx, ax ; No stall
mov dx, bx ; Stall

The easiest way to avoid partial register stalls is to always use full registers and use MOVZX
or MOVSX when reading from smaller memory operands. These instructions are fast on the
PPro, P2 and P3, but slow on earlier processors. Therefore, a compromise is offered when
you want your code to perform reasonably well on all processors. The replacement for
MOVZX EAX,BYTE PTR [MEM8] looks like this:

; Example 5.13. Replacement for movzx

 51

xor eax, eax
mov al, byte ptr [mem8]

The PPro, P2 and P3 processors make a special case out of this combination to avoid a
partial register stall when later reading from EAX. The trick is that a register is tagged as
empty when it is XOR'ed with itself. The processor remembers that the upper 24 bits of EAX
are zero, so that a partial stall can be avoided. This mechanism works only on certain
combinations:

; Example 5.14. Removing partial register stalls with xor
xor eax, eax
mov al, 3
mov ebx, eax ; No stall

xor ah, ah
mov al, 3
mov bx, ax ; No stall

xor eax, eax
mov ah, 3
mov ebx, eax ; Stall

sub ebx, ebx
mov bl, dl
mov ecx, ebx ; No stall

mov ebx, 0
mov bl, dl
mov ecx, ebx ; Stall

mov bl, dl
xor ebx, ebx ; No stall

Setting a register to zero by subtracting it from itself works the same as the XOR, but setting
it to zero with the MOV instruction doesn't prevent the stall.

We can set the XOR outside a loop:

; Example 5.15. Removing partial register stalls with xor outside loop
 xor eax, eax
 mov ecx, 100
LL: mov al, [esi]
 mov [edi], eax ; no stall
 inc esi
 add edi, 4
 dec ecx
 jnz LL

The processor remembers that the upper 24 bits of EAX are zero as long as you don't get an
interrupt, misprediction, or other serializing event.

You should remember to neutralize any partial register you have used before calling a
subroutine that might push the full register:

; Example 5.16. Removing partial register stall before call
add bl, al
mov [mem8], bl
xor ebx, ebx ; neutralize bl
call _highLevelFunction

 52

Many high-level language procedures push EBX at the start of the procedure, and this would
generate a partial register stall in the example above if you hadn't neutralized BL.

Setting a register to zero with the XOR method doesn't break its dependence on earlier
instructions on PPro, P2, P3 and PM (but it does on P4). Example:

; Example 5.17. Remove partial register stalls and break dependence
div ebx
mov [mem], eax
mov eax, 0 ; Break dependence
xor eax, eax ; Prevent partial register stall
mov al, cl
add ebx, eax

Setting EAX to zero twice here seems redundant, but without the MOV EAX,0 the last
instructions would have to wait for the slow DIV to finish, and without XOR EAX,EAX you
would have a partial register stall.

The FNSTSW AX instruction is special: in 32-bit mode it behaves as if writing to the entire
EAX. In fact, it does something like this in 32-bit mode:

; Example 5.18. Equivalence model for fnstsw ax
and eax, 0ffff0000h
fnstsw temp
or eax, temp

hence, you don't get a partial register stall when reading EAX after this instruction in 32 bit
mode:

; Example 5.19. Partial register stalls with fnstsw ax
fnstsw ax / mov ebx,eax ; Stall only if 16 bit mode
mov ax,0 / fnstsw ax ; Stall only if 32 bit mode

Partial flags stalls
The flags register can also cause partial register stalls:

; Example 5.20. Partial flags stall
cmp eax, ebx
inc ecx
jbe xx ; Partial flags stall

The JBE instruction reads both the carry flag and the zero flag. Since the INC instruction
changes the zero flag, but not the carry flag, the JBE instruction has to wait for the two
preceding instructions to retire before it can combine the carry flag from the CMP instruction
and the zero flag from the INC instruction. This situation is likely to be a bug in the assembly
code rather than an intended combination of flags. To correct it, change INC ECX to ADD
ECX,1. A similar bug that causes a partial flags stall is SAHF / JL XX. The JL instruction
tests the sign flag and the overflow flag, but SAHF doesn't change the overflow flag. To
correct it, change JL XX to JS XX.

Unexpectedly (and contrary to what Intel manuals say) we also get a partial flags stall after
an instruction that modifies some of the flag bits when reading only unmodified flag bits:

; Example 5.21. Partial flags stall when reading unmodified flag bits
cmp eax, ebx
inc ecx
jc xx ; Partial flags stall

but not when reading only modified bits:

 53

; Example 5.22. No partial flags stall when reading modified bits
cmp eax, ebx
inc ecx
jz xx ; No stall

Partial flags stalls are likely to occur on instructions that read many or all flags bits, i.e.
LAHF, PUSHF, PUSHFD. The following instructions cause partial flags stalls when followed by
LAHF or PUSHF(D): INC, DEC, TEST, bit tests, bit scan, CLC, STC, CMC, CLD, STD, CLI,
STI, MUL, IMUL, and all shifts and rotates. The following instructions do not cause partial
flags stalls: AND, OR, XOR, ADD, ADC, SUB, SBB, CMP, NEG. It is strange that TEST and AND
behave differently while, by definition, they do exactly the same thing to the flags. You may
use a SETcc instruction instead of LAHF or PUSHF(D) for storing the value of a flag in order
to avoid a stall.

Examples:

; Example 5.23. Partial flags stalls
inc eax / pushfd ; Stall
add eax,1 / pushfd ; No stall

shr eax,1 / pushfd ; Stall
shr eax,1 / or eax,eax / pushfd ; No stall

test ebx,ebx / lahf ; Stall
and ebx,ebx / lahf ; No stall
test ebx,ebx / setz al ; No stall

clc / setz al ; Stall
cld / setz al ; No stall

The penalty for partial flags stalls is approximately 4 clocks.

Flags stalls after shifts and rotates
You can get a stall resembling the partial flags stall when reading any flag bit after a shift or
rotate, except for shifts and rotates by one (short form):

; Example 5.24. Partial flags stalls after shift and rotate
shr eax,1 / jz xx ; No stall
shr eax,2 / jz xx ; Stall
shr eax,2 / or eax,eax / jz xx ; No stall

shr eax,5 / jc xx ; Stall
shr eax,4 / shr eax,1 / jc xx ; No stall

shr eax,cl / jz xx ; Stall, even if cl = 1
shrd eax,ebx,1 / jz xx ; Stall
rol ebx,8 / jc xx ; Stall

The penalty for these stalls is approximately 4 clocks.

5.9 Store forwarding stalls
A store forwarding stall is somewhat analogous to a partial register stall. It occurs when you
mix data sizes for the same memory address:

; Example 5.25. Store-to-load forwarding stall
mov byte ptr [esi], al
mov ebx, dword ptr [esi] ; Stall. Big read after small write

 54

The large read after a small write prevents store-to-load forwarding, and the penalty for this
is approximately 7 - 8 clock cycles.

Unlike the partial register stalls, you also get a store forwarding stall when you write a bigger
operand to memory and then read part of it, if the smaller part doesn't start at the same
address:

; Example 5.26. Store-to-load forwarding stall
mov dword ptr [esi], eax
mov bl, byte ptr [esi] ; No stall
mov bh, byte ptr [esi+1] ; Stall. Not same start address

We can avoid this stall by changing the last line to MOV BH,AH, but such a solution is not
possible in a situation like this:

; Example 5.27. Store-to-load forwarding stall
fistp qword ptr [edi]
mov eax, dword ptr [edi]
mov edx, dword ptr [edi+4] ; Stall. Not same start address

Interestingly, you can get a get a bogus store forwarding stall when writing and reading
completely different addresses if they happen to have the same set-value in different cache
banks:

; Example 5.28. Bogus store-to-load forwarding stall
mov byte ptr [esi], al
mov ebx, dword ptr [esi+4092] ; No stall
mov ecx, dword ptr [esi+4096] ; Bogus stall

5.10 Bottlenecks in PPro, P2, P3
When optimizing code for these processors, it is important to analyze where the bottlenecks
are. Spending time on optimizing away one bottleneck doesn't make sense if another
bottleneck is narrower.

If you expect code cache misses, then you should restructure your code to keep the most
used parts of code together.

If you expect many data cache misses, then forget about everything else and concentrate
on how to restructure the data to reduce the number of cache misses (page 5), and avoid
long dependence chains after a data read cache miss.

If you have many divisions, then try to reduce them as described in manual 1: "Optimizing
software in C++" and manual 2: "Optimizing subroutines in assembly language", and make
sure the processor has something else to do during the divisions.

Dependence chains tend to hamper out-of-order execution. Try to break long dependence
chains, especially if they contain slow instructions such as multiplication, division, and
floating point instructions. See the manual 1: "Optimizing software in C++" and manual 2:
"Optimizing subroutines in assembly language".

If you have many jumps, calls, or returns, and especially if the jumps are poorly predictable,
then try if some of them can be avoided. Replace poorly predictable conditional jumps with
conditional moves if it doesn't increase dependencies. Inline small procedures. (See manual
2: "Optimizing subroutines in assembly language").

If you are mixing different data sizes (8, 16, and 32 bit integers) then look out for partial
stalls. If you use PUSHF or LAHF instructions then look out for partial flags stalls. Avoid
testing flags after shifts or rotates by more than 1 (page 50).

 55

If you aim at a throughput of 3 µops per clock cycle then be aware of possible delays in
instruction fetch and decoding (page 40), especially in small loops. Instruction decoding is
often the narrowest bottleneck in these processors, and unfortunately this factor makes
optimization quite complicated. If you are making a modification in the beginning of your
code in order to improve it, then this modification may have the side effect of moving the
IFETCH boundaries and 16-byte boundaries in the subsequent code. This change of
boundaries can have unpredicted effects on the total clock count which obfuscates the
effect of the change you made.

The limit of two permanent register reads per clock cycle may reduce your throughput to
less than 3 µops per clock cycle (page 44). This is likely to happen if you often read
registers more than 4 clock cycles after they last were modified. This may, for example,
happen if you often use pointers for addressing your data but seldom modify the pointers.

A throughput of 3 µops per clock requires that no execution port gets more than one third of
the µops (page 48).

The retirement station can handle 3 µops per clock, but may be slightly less effective for
taken jumps (page 49).

 56

6 Pentium M pipeline

6.1 The pipeline in PM
This chapter applies to the Intel Pentium M, Core Solo and Core Duo, but not to Core 2. The
abbreviation PM in this manual includes Pentium M, Core Solo and Core Duo.

The PM has basically the same microarchitecture as PPro, P2 and P3. The main stages in
the pipeline are: branch prediction, instruction fetch, instruction decoding, register renaming,
reorder buffer read, reservation station, execution ports, reorder buffer write-back, and
retirement.

Several minor modifications have been made, but the overall functioning is almost identical
to the PPro pipeline, as shown in figure 5.1 page 39. The exact structure of the PM pipeline
has not been revealed by Intel. The only thing they have told is that the pipeline is longer, so
the following discussion is mainly guesswork based on my own measurements.

The total length of the pipeline can be estimated from the branch misprediction penalty (p.
8). This penalty is 3-4 clock cycles more than for the P2 and P3. This indicates that the
pipeline may have 3 or 4 extra stages. We may try to guess what these extra stages are
used for.

The branch prediction mechanism is much more complicated in PM than in previous
processors (p. 22), so it is likely that this mechanism requires three pipeline stages instead
of two.

Instruction fetching has also been improved so that 16-byte boundaries or cache line
boundaries do not cause delays in jumps (p. 57 below). This may require an extension of
the instruction fetch unit from 3 to 4 stages.

The new stack engine (p. 61) is implemented near the instruction decoding, according to the
Intel publication mentioned below. It is almost certain that at least one extra pipeline stage is
required for the stack engine and for inserting stack synchronization µops (p. 61). This claim
is based on my observation that an instruction that is decoded by D1 or D2 can generate a
synchronization µop without adding to the decode time even though these decoders can
only generate one µop. The extra synchronization µop must therefore be generated at a
pipeline stage that comes after the stage that contains decoders D0-2.

One may wonder if the µop fusion mechanism (explained below, p. 59) requires extra
stages in the pipeline. The number of stages from the ROB-read to the ROB-writeback
stage can be estimated by measuring register read stalls (p. 44). My measurements indicate
that this distance is still only 3 clocks. We can therefore conclude that no extra pipeline
stage is used for splitting fused µops before the execution units. The two parts of a fused
µop share the same ROB entry, which is submitted to two different ports, so there is
probably not any extra pipeline stage for joining the split µops before the retirement station,
either.

The RAT, ROB-read, and RS stages have all been modified in order to handle fused µops
with three input dependences. It is possible that an extra pipeline stage has been added to
the RAT because of the extra workload in this stage, but I have no experimental evidence
supporting such a hypothesis. The RS still needs only one clock according to my
measurements of the distance from ROB-read to ROB-writeback mentioned above. There
have been speculations that the RS and ROB might be smaller than in previous processors,
but this is not confirmed by my measurements. The RS and ROB can probably hold 20 and
40 fused µops respectively.

 57

The conclusion is that the PM pipeline probably has 3 or 4 stages more than the PPro
pipeline, including one extra stage for branch prediction, one extra stage for instruction
fetching, and one extra stage for the stack engine.

The PM has many power-saving features that turn off certain parts of the internal buses,
execution units, etc. when they are not used. Whether any of these new features require
extra pipeline stages is unknown. These power-saving features have the positive side effect
that the maximum clock frequency we can have without overheating the chip is increased.

The µop fusion, stack engine and complicated branch prediction are improvements which
not only lower the power consumption but also speed up execution.

(Literature: S. Gochman, et al.: The Intel Pentium M Processor: Microarchitecture and
Performance. Intel Technology Journal, vol. 7, no. 2, 2003).

6.2 The pipeline in Core Solo and Duo
I have not had the chance to do a thorough testing of the Core Solo and Core Duo yet, but a
preliminary testing shows that its kernel is very similar to the Pentium M. The Core Solo/Duo
have more advanced power saving features than the Pentium M, including the "SpeedStep"
technology that enables it to lower the CPU voltage and clock frequency when the workload
is small. The Core Duo has two processor cores with separate level-1 caches and a shared
level-2 cache.

 (Literature: S. Gochman, et al.: Introduction to Intel Core Duo Processor Architecture. Intel
Technology Journal, vol. 10, no. 2, 2006).

6.3 Instruction fetch
Instruction fetching in the PM works the same way as in PPro, P2 and P3 (see p. 39) with
one important improvement. Fetching of instructions after a predicted jump is more efficient
and is not delayed by 16-byte boundaries. The delays in table 5.1 (p. 40) do not apply to the
PM and it is possible to have one jump per clock cycle. For this reason, it is no longer
important to align subroutine entries and loop entries. The only reason for aligning code on
the PM is to improve cache efficiency.

Instructions are still fetched in IFETCH blocks (p. 39) which are up to 16 bytes long. The PM
can fetch a maximum of one IFETCH block per clock cycle. The first IFETCH block after a
predicted jump will normally begin at the first instruction. This is different from the previous
processors where the placement of the first IFETCH block was uncertain. The next IFETCH
block will begin at the last instruction boundary that is no more than 16 bytes away. Thus,
you can predict where all IFETCH blocks are by looking at the output listing of the
assembler. Assume that the first IFETCH block starts at a label jumped to. The second
IFETCH block is found by going 16 bytes forward. If there is no instruction boundary there
then go backwards to the nearest instruction boundary. This is where the second IFETCH
block starts. Knowing where the IFETCH boundaries are can help improve decoding speed,
as explained below.

6.4 Instruction decoding
Instruction decoding on the PM works the same way as on PPro, P2 and P3, as explained
on page 40. There are three parallel decoders: D0, D1 and D2. Decoder D0 can handle any
instruction. D1 and D2 can handle only instructions that generate no more than one µop, are
no more than 8 bytes long, and have no more than one prefix.

 58

It is possible to decode three instructions in the same clock cycle if they are contained in the
same IFETCH block and the second and third instruction satisfy the criteria for going into
decoders D1 and D2.

Some complex instructions take more than one clock cycle to decode:

• Instructions that generate more than four µops take more than one clock cycle to
decode.

• Instructions with more than one prefix take 2+n clock cycles to decode, where n is
the total number of prefixes. See manual 2: "Optimizing subroutines in assembly
language" for an overview of instruction prefixes. Instructions with more than one
prefix should be avoided.

• An operand size prefix causes problems if the size of the rest of the instruction is
changed by the prefix. Decoder D0 will need an extra clock cycle to re-interpret the
instruction. D1 and D2 are stalled in the meantime because the instruction length is
re-adjusted. This problem happens when an instruction has a 16-bit immediate
operand in 32-bit mode or a 32-bit immediate operand in 16-bit mode. See p. 43 for
examples.

• The same problem occurs if an address size prefix changes the length of the rest of
the instruction, for example LEA EAX,[BX+200] in 32-bit mode or
LEA AX,[EBX+ECX] in 16-bit mode.

The maximum output of the decoders is six µops per clock cycle. This speed is obtained if
the abovementioned problems are avoided and instructions are scheduled according to a
4-1-1 pattern so that every third instruction generates 4 µops and the next two instructions
generate 1 µop each. The instruction that generates 4 µops will go into decoder D0, and the
next two instructions will go into D1 and D2. See manual 4: "Instruction tables" for a list of
how many µops each instruction generates, and use the values listed under "µops fused
domain". The first instruction in an IFETCH block must go to decoder D0. If this instruction
was intended for D1 or D2 according to the 4-1-1 pattern, then the pattern is broken and a
clock cycle is lost.

It is superfluous to schedule the code for a decoding output of six µops per clock cycle
because the throughput in later stages is only three µops per clock cycle. For example, a
2-1-2-1 pattern will generate three µops per clock cycle. But it is recommended to aim at an
average output somewhat higher than three µops per clock cycle because you may lose a
clock cycle when an instruction intended for decoder D1 or D2 falls at the beginning of an
IFETCH block.

If decoding speed is critical then you may reduce the risk of single-µop instructions falling in
the beginning of IFETCH blocks by reducing instruction sizes. See manual 2: "Optimizing
subroutines in assembly language" about optimizing for code size. A possibly more effective
strategy is to determine where each IFETCH block begins according to the method
explained on p. 57 and then adjust instruction lengths so that only instructions intended for
decoder D0 fall at the beginnings of IFETCH blocks. See the chapter "Making instructions
longer for the sake of alignment" in manual 2: "Optimizing subroutines in assembly
language" for how to make instruction codes longer. This method is tedious and should only
be used if decoding is a bottleneck. Example:

; Example 6.1. Arranging IFETCH blocks
LL: movq mm0,[esi+ecx] ; 4 bytes long
 paddd mm0,[edi+ecx] ; 4 bytes long
 psrld mm0,1 ; 4 bytes long
 movq [esi+ecx],mm0 ; 4 bytes long
 add ecx,8 ; 3 bytes long

 59

 jnz LL ; 2 bytes long

This loop calculates the average of two lists of integers. The loop has six instructions which
generate one µop each. The first four instructions are all four bytes long. If we assume that
the first IFETCH block starts at LL:, then the second IFETCH block will start 16 bytes after
this, which is at the beginning of ADD ECX,8. The first three instructions will be decoded in
one clock cycle. The fourth instruction will be decoded alone in the second clock cycle
because there are no more instructions in the first IFETCH block. The last two instructions
will be decoded in the third clock cycle. The total decoding time is three clock cycles per
iteration of the loop. We can improve this by adding a DS segment prefix, for example to the
fourth instruction. This makes the instruction one byte longer, so that the first IFETCH block
now ends before the end of the fourth instruction. This causes the second IFETCH block to
be moved up to the beginning of the fourth instruction. Now the last three instructions are in
the same IFETCH block so that they can be decoded simultaneously in D0, D1 and D2,
respectively. The decoding time is now only two clock cycles for the six instructions. The
total execution time has been reduced from three to two clock cycles per iteration because
nothing else limits the speed, except possibly cache misses.

6.5 Loop buffer
The PM has a loop buffer of 4x16 bytes storing predecoded instructions. This is an
advantage in tiny loops where instruction fetching is a bottleneck. The decoders can reuse
the fetched instructions up to 64 bytes back. This means that instruction fetching is not a
bottleneck in a loop that has no more than 64 bytes of code and is aligned by 16. Alignment
of the loop is not necessary if the loop has no more than 49 bytes of code because a loop of
this size will fit into the 4*16 bytes even in the worst case of misalignment.

6.6 Micro-op fusion
The register renaming (RAT) and retirement (RRF) stages in the pipeline are bottlenecks
with a maximum throughput of 3 µops per clock cycle. In order to get more through these
bottlenecks, the designers have joined some operations together that were split in two µops
in previous processors. They call this µop fusion. The fused operations share a single µop in
most of the pipeline and a single entry in the reorder buffer (ROB). But this single ROB entry
represents two operations that have to be done by two different execution units. The fused
ROB entry is dispatched to two different execution ports but is retired as a single unit.

The µop fusion technique can only be applied to two types of combinations: memory write
operations and read-modify operations.

A memory write operation involves both the calculation of the memory address and transfer
of the data. On previous processors, these two operations have been split into two µops,
where port 3 takes care of the address calculation and port 4 takes care of the data transfer.
These two µops are fused together in most PM instructions that write to memory. A memory
read operation requires only one µop (port 2), as it does in previous processors.

The second type of operations that can be fused is read-modify operations. For example,
the instruction ADD EAX,[mem32] involves two operations: The first operation (port 2)
reads from [mem32], the second operation (port 0 or 1) adds the value that has been read
to EAX. Such instructions have been split into two µops on previous processors, but can be
fused together on the PM. This applies to many read-modify instructions that work on
general purpose registers, floating point stack registers and MMX registers, but not to read-
modify instructions that work on XMM registers.

A read-modify-write operation, such as ADD [mem32],EAX does not fuse the read and
modify µops, but it does fuse the two µops needed for the write.

 60

Examples of µop fusion:

; Example 6.2. Uop fusion
mov [esi], eax ; 1 fused uop
add eax, [esi] ; 1 fused uop
add [esi], eax ; 2 single + 1 fused uop
fadd qword ptr [esi] ; 1 fused uop
paddw mm0, qword ptr [esi] ; 1 fused uop
paddw xmm0, xmmword ptr [esi] ; 4 uops, not fused
addss xmm0, dword ptr [esi] ; 2 uops, not fused
movaps xmmword ptr [esi], xmm0 ; 2 fused uops

As you can see, the packed addition (PADDW) read-modify instruction can be fused in the
Pentium M if the destination is a 64-bit MMX register, but not if the destination is a 128-bit
XMM register. The latter instruction requires two µops for reading 64 bits each, and two
more µops for adding 64 bits each. The ADDSS instruction cannot be fused, even though it
uses only the lower part of the XMM register. No read-modify instruction that involves an
XMM register can be fused, but the XMM memory write instructions can be fused, as the
last example shows.

The Core Solo/Duo has more opportunities for µop fusion of XMM instructions. A 128-bit
XMM instruction is handled by two or more 64-bit µops in the 64-bit execution units. Two 64-
bit µops can be "laminated" together in the decoders and early pipeline stages, according to
the article cited in chapter 6.2. It is not clear whether there is any significant difference
between "fusion" and "lamination" of µops. The consequence of this mechanism is that the
throughput of XMM instructions is increased in the decoders, but not in the execution units
of the Core Solo/Duo.

The reorder buffer (ROB) of PM has been redesigned so that each entry can have up to
three input dependences, where previous designs allowed only two. For example, the
instructions MOV [ESI+EDI],EAX and ADD EAX,[ESI+EDI] both have three input
dependences, in the sense that both EAX, ESI and EDI have to be ready before all parts of
the instructions can be executed. The unfused µops that go to the execution units still have
only two input dependences. MOV [ESI+EDI],EAX is split into an address calculation
µop that depends on ESI and EDI, and a store µop that depends on the output of the
address calculation µop and on EAX. Similarly, ADD EAX,[ESI+EDI] is split into a read
µop that depends on ESI and EDI, and an ADD µop that depends on the output of the read
µop and on EAX. µops that are not fused can only have two input dependences. For
example, the instructions ADC EAX,EBX and CMOVE EAX,EBX both have three input
dependences: EAX, EBX and the flags. Since neither of these instructions can be fused, they
must generate two µops each.

µop fusion has several advantages:

• Decoding becomes more efficient because an instruction that generates one fused
µop can go into any of the three decoders while an instruction that generates two
µops can go only to decoder D0.

• The load on the bottlenecks of register renaming and retirement is reduced when
fewer µops are generated.

• The capacity of the reorder buffer (ROB) is increased when a fused µop uses only
one entry.

If a program can benefit from these advantages then it is preferred to use instructions that
generate fused µops over instructions that don't. If one or more execution unit is the only
bottleneck, then µop fusion doesn't matter because the fused µops are split in two when
sent to the execution units.

 61

The table in manual 4: "Instruction tables" shows the fused and unfused µops generated by
each instruction in the PM. The column "µops fused domain" indicates the number of µops
generated by the decoders, where a fused µop counts as one. The columns under "µops
unfused domain" indicates the number of µops that go to each execution port. The fused
µops are split at the execution units so that a fused memory write µop is listed both under
port 3 and 4, and a fused read-modify µop is listed both under port 2 and port 0 or 1. The
instructions that generate fused µops are the ones where the number listed under "µops
fused domain" is less than the sum of the numbers listed under "µops unfused domain".

6.7 Stack engine
Stack instructions such as PUSH, POP, CALL and RET all modify the stack pointer ESP.
Previous processors used the integer ALU for adjusting the stack pointer. For example, the
instruction PUSH EAX generated three µops on the P3 processor, two for storing the value
of EAX, and one for subtracting 4 from ESP. On PM, the same instruction generates only
one µop. The two store µops are joined into one by the mechanism of µop fusion, and the
subtraction of 4 from ESP is done by a special adder that is dedicated for the stack pointer
only, called the stack engine. The stack engine is placed immediately after the instruction
decoders in the pipeline, before the out-of-order core. The stack engine can handle three
additions per clock cycle. Consequently, no instruction will have to wait for the updated
value of the stack pointer after a stack operation. One complication by this technique is that
the value of ESP may also be needed or modified in the out-of-order execution units. A
special mechanism is needed for synchronizing the value of the stack pointer in the stack
engine and the out-of-order core. The true logical value of the stack pointer ESPP is
obtained as a 32-bit value ESPO stored in the out-of-order core or the permanent register file
and a signed 8-bit delta-value ESPd stored in the stack engine:

ESPP = ESPO + ESPd.

The stack engine puts the delta value ESPd into the address syllable of every stack
operation µop as an offset so that it can be added to ESPO in the address calculation
circuitry at port 2 or 3. The value of ESPd cannot be put into every possible µop that uses
the stack pointer, only the µops generated by PUSH, POP, CALL and RET. If the stack engine
meets a µop other than these that needs ESP in the out-of-order execution units, and if
ESPd is not zero, then it inserts a synchronization µop that adds ESPd to ESPO and sets
ESPd to zero. The following µop can then use ESPO as the true value of the stack pointer
ESPP. The synchronization µop is generated after the instruction has been decoded, and
does not influence the decoders in any way.

The synchronization mechanism can be illustrated by a simple example:

; Example 6.3. Stack synchronization
push eax
push ebx
mov ebp, esp
mov eax, [esp+16]

This sequence will generate four µops. Assuming that ESPd is zero when we start, the first
PUSH instruction will generate one µop that writes EAX to the address [ESPO-4] and sets
ESPd = -4. The second PUSH instruction will generate one µop that writes EBX to the
address [ESPO-8] and sets ESPd = -8. When the stack engine receives the µop for MOV
EBP,ESP from the decoders, it inserts a synchronization µop that adds -8 to ESPO. At the
same time, it sets ESPd to zero. The synchronization µop comes before the MOV EBP,ESP
µop so that the latter can use ESPO as the true value of ESPP. The last instruction, MOV
EAX,[ESP+16], also needs the value of ESP, but we will not get another synchronization

 62

µop here because the value of ESPd is zero at this point, so a synchronization µop would be
superfluous.

Instructions that require synchronization of ESPO include all instructions that have ESP as
source or destination operand, e.g. MOV EAX,ESP, MOV ESP,EAX and ADD ESP,4, as
well as instructions that use ESP as a pointer, e.g. MOV EAX,[ESP+16]. It may seem
superfluous to generate a synchronization µop before an instruction that only writes to ESP.
It would suffice to set ESPd to zero, but it would probably complicate the logic to make the
distinction between, say, MOV ESP,EAX and ADD ESP,EAX.

A synchronization µop is also inserted when ESPd is near overflow. The 8-bit signed value
of ESPd would overflow after 32 PUSH EAX or 64 PUSH AX instructions. In most cases, we
will get a synchronization µop after 29 PUSH or CALL instructions in order to prevent
overflow in case the next clock cycle gives PUSH instructions from all three decoders. The
maximum number of PUSH instructions before a synchronization µop is 31 in the case that
the last three PUSH instructions are decoded in the same clock cycle. The same applies to
POP and RET instructions (Actually, you can have one more POP than PUSH because the
value stored is -ESPd and the minimum of a signed 8-bit number is -128, while the
maximum is +127).

The synchronization µops are executed at any one of the two integer ALU's at port 0 and 1.
They retire as any other µops. The PM has a recovery table that is used for undoing the
effect of the stack engine in mispredicted branches.

The following example shows how synchronization µops are generated in a typical program
flow:

; Example 6.4. Stack synchronization
 push 1
 call FuncA
 pop ecx
 push 2
 call FuncA
 pop ecx
...
...
FuncA PROC NEAR
 push ebp
 mov ebp, esp ; Synch uop first time, but not second time
 sub esp, 100
 mov eax, [ebp+8]
 mov esp, ebp
 pop ebp
 ret
FuncA ENDP

The MOV EBP,ESP instruction in FuncA comes after a PUSH, a CALL, and another PUSH. If
ESPd was zero at the start, then it will be -12 here. We need a synchronization µop before
we can execute MOV EBP,ESP. The SUB ESP,100 and MOV ESP,EBP don't need
synchronization µops because there have been no PUSH or POP since the last
synchronization. After this, we have the sequence POP / RET / POP / PUSH / CALL / PUSH
before we meet MOV EBP,ESP again in the second call to FUNCA. ESPd has now been
counted up to 12 and back again to 0, so we don't need a synchronization µop the second
time we get here. If POP ECX is replaced by ADD ESP,4 then we will need a
synchronization µop at the ADD ESP,4 as well as at the second instance of MOV
EBP,ESP. The same will happen if we replace the sequence POP ECX / PUSH 2 by MOV
DWORD PTR [ESP],2 but not if it replaced by MOV DWORD PTR [EBP],2.

 63

We can make a rule for predicting where the synchronization µops are generated by
dividing instructions into the following classes:

1. Instructions that use the stack engine: PUSH, POP, CALL, RET, except RET n.

2. Instructions that use the stack pointer in the out-of-order core, i.e. instructions that
have ESP as source, destination or pointer, and CALL FAR, RETF, ENTER.

3. Instructions that use the stack pointer both in the stack engine and in the out-of-
order core, e.g. PUSH ESP, PUSH [ESP+4], POP [ESP+8], RET n.

4. Instructions that always synchronize ESPO: PUSHF(D), POPF(D), PUSHA(D),
POPA(D), LEAVE.

5. Instructions that don't involve the stack pointer in any way.

A sequence of instructions from class 1 and 5 will not generate any synchronization µops,
unless ESPd is near overflow. A sequence of instructions from class 2 and 5 will not
generate any synchronization µops. The first instruction from class 2 after an instruction
from class 1 will generate a synchronization µop, except if ESPd is zero. Instructions from
class 3 will generate synchronization µops in most cases. Instructions from class 4 generate
a synchronization µop from the decoder rather than from the stack engine, even if ESPd = 0.

You may want to use this rule for reducing the number of synchronization µops in cases
where the throughput of 3 µops per clock is a bottleneck and in cases where execution port
0 and 1 are both saturated. You don't have to care about synchronization µops if the
bottleneck is elsewhere.

(Literature: S. Gochman, et al.: The Intel Pentium M Processor: Microarchitecture and
Performance. Intel Technology Journal, vol. 7, no. 2, 2003).

6.8 Register renaming
Register renaming is controlled by the register alias table (RAT) and the reorder buffer
(ROB), shown in figure 5.1. The µops from the decoders and the stack engine go to the
RAT via a queue that can hold approximately 10 µops, and then to the ROB-read and the
reservation station. The RAT can handle 3 µops per clock cycle. This means that the overall
throughput of the microprocessor can never exceed 3 fused µops per clock cycle on
average.

The RAT can rename three registers per clock cycle, and it can even rename the same
register three times in one clock cycle.

A code with many renamings can sometimes cause stalls, which are difficult to predict. My
hypothesis is that these stalls occur in the RAT when it is out of temporary registers. The
PM has 40 temporary registers.

The Core Solo/Duo can rename the floating point control word in up to four temporary
registers, while the Pentium M cannot rename the floating point control word. This is
important for the performance of floating point to integer conversions in C/C++ code.

6.9 Register read stalls
The PM is subject to the same kind of register read stalls as the PPro, P2 and P3, as
explained on page 44. The ROB-read stage can read no more than three different registers
from the permanent register file per clock cycle. This applies to all general purpose
registers, the stack pointer, the flags register, floating point registers, MMX registers and

 64

XMM registers. An XMM register counts as two, because it is stored as two 64-bit registers.
There is no limitation on registers that have been modified recently by a preceding µop so
that the value has not yet passed through the ROB-writeback stage. See page 44 for a
detailed explanation of register read stalls.

Previous processors allowed only two permanent register reads per clock cycle. This value
may have been increased to three in the PM, though this is uncertain. Three register read
ports may not be sufficient for preventing register read stalls, because many instructions
generate fewer µops on PM than on previous processors, thanks to µop fusion and the
stack engine, but not fewer register reads. This makes the µop stream more compact and
therefore increases the average number of register reads per µop. A fused µop can have up
to three input registers, while previous processors allowed only two inputs per µop. If three
fused µops with three input registers each go into the ROB-read stage in the same clock
cycle then we can have a maximum of nine inputs to read. If these nine input registers are
all different and all in the permanent register file, then it will take three clock cycles to read
them all through the three register read ports.

The following example shows how register read stalls can be removed:

; Example 6.5. Register read stalls
inc eax ; (1) read eax, write eax
add ebx, eax ; (2) read ebx eax, write ebx
add ecx, [esp+4] ; (3) read ecx esp, write ecx
mov edx, [esi] ; (4) read esi, write edx
add edi, edx ; (5) read edi edx, write edi

These instructions generate one µop each through the ROB-read. We assume that none of
the registers have been modified in the preceding three clock cycles. The µops go three by
three, but we do not know which three go together. There are three possibilities:

A. (1), (2) and (3) go together. We need four register reads: EAX, EBX, ECX, ESP.

B. (2), (3) and (4) go together. We need four register reads: EBX, ECX, ESP, ESI. (EAX
doesn't count because it has been written to in the preceding triplet)

C. (3), (4) and (5) go together. We need four register reads: ECX, ESP, ESI, EDI. (EDX
doesn't count because it is written to before it is read).

All three possibilities involve a stall in the ROB-read for reading more than three registers
that have not been modified recently. We can remove this stall by inserting a
MOV ECX,ECX before the first instruction. This will refresh ECX so that we need only three
permanent register reads, both in situation A, B and C. If we had chosen to refresh, for
example, EBX instead then we would remove the stall in situation A and B, but not in
situation C. So we would have a 2/3 probability of removing the stall. Refreshing EDI would
have a 1/3 probability of removing the stall, because it works only in situation C. Refreshing
ESP would also remove the stall in all three situations, but this would delay the fetching of
the memory operands by approximately two clock cycles. In general, it doesn't pay to
remove a register read stall by refreshing a register used as pointer for a memory read
because this will delay the fetching of the memory operand. If we refresh ESI in the above
example then this would have a 2/3 probability of removing a register read stall, but it would
delay the fetching of EDX.

If ESP has been modified by a stack operation, e.g. PUSH, prior to the code in the above
example so that ESPd is not zero (see p. 61) then the stack engine will insert a stack
synchronization µop between (2) and (3). This will remove the register read stall but delay
the fetching of the memory operand.

 65

6.10 Execution units
Unfused µops are submitted from the reservation station to the five execution ports which
connect to all the execution units. Port 0 and 1 receive all arithmetic instructions. Port 2 is
for memory read instructions. Memory write instructions are unfused into two µops which go
to port 3 and 4, respectively. Port 3 calculates the address, and port 4 does the data
transfer.

The maximum throughput of the execution units is five unfused µops per clock cycle, one at
each port. On previous processors, such a high throughput could only be obtained in short
bursts when the reservation station was full because of the limitation of three µops per clock
cycle in the RAT and retirement station. The PM, however, can maintain the throughput of
five µops per clock cycle for unlimited periods of time because three fused µops in the RAT
can generate five unfused µops at the execution ports. The maximum throughput can be
obtained when one third of the µops are fused read-modify instructions (port 2 and port 0/1),
one third is fused store instructions (port 3 and 4), and one third is simple ALU or jump
instructions (port 0/1).

The execution units are well distributed between port 0 and 1, and many instructions can go
to either of these two ports, whichever is vacant first. It is therefore possible to keep both
ports busy most of the time in most cases. Port 0 and 1 both have an integer ALU, so that
both can handle the most common integer instructions like moves, addition and logic
instructions. Two such µops can be executed simultaneously, one at each port. Packed
integer ALU instructions can also go to any of the two ALU's.

Integer and floating point instructions share the same multiplication unit and the same
division unit, but not the same ALU (addition and logic). This means that the PM can do
floating point additions and integer additions simultaneously, but it cannot do floating point
multiplications and integer multiplications simultaneously.

Simple instructions such as integer additions have a latency of one clock cycle. Integer
multiplications and packed integer multiplications take 3-4 clock cycles. The multiplication
unit is pipelined so that it can start a new multiplication every clock cycle. The same applies
to floating point addition and single precision floating point multiplication. Double precision
floating point multiplications use part of the multiplier unit twice so that it can start a new
multiplication every second clock cycle, and the latency is 5.

128-bit XMM operations are split into two 64-bit µops, except if the output is only 64 bits. For
example, the ADDPD instruction generates two µops for the two 64-bit additions, while
ADDSD generates only one µop.

6.11 Execution units that are connected to both port 0 and 1
Some execution units are duplicated as mentioned above. For example, two integer vector
addition µops can execute simultaneously, one at each ALU going through port 0 and 1,
respectively.

Some other execution units are accessible through both port 0 and 1 but are not duplicated.
For example, a floating point addition µop can go through either port 0 or port 1. But there is
only one floating point adder so it is not possible to execute two floating point addition µops
simultaneously.

This mechanism was no doubt implemented in order to improve performance by letting
floating point addition µops go through whichever port is vacant first. But unfortunately, this
mechanism is doing much more harm than good. A code where most of the µops are
floating point additions or other operations that can go through either port takes longer time
to execute than expected, typically 50% more time.

 66

The most likely explanation for this phenomenon is that the scheduler will issue two floating
point add µops in the same clock cycle, one for each of the two ports. But these two µops
cannot execute simultaneously because they need the same execution unit. The
consequence is that one of the two ports is stalled and prevented from doing something
else for one clock cycle.

This applies to the following instructions:

• All floating point additions and subtractions, including single, double and long double
precision, in ST() and XMM registers with both scalar and vector operands, e.g.
FADD, ADDSD, SUBPS.

• xmm compare instructions with xmm result, e.g. CMPEQPS.

• xmm max and min instructions, e.g. MAXPS.

• xmm vector multiplications with 16 bit integers, e.g. PMULLW, PMADDWD.

Any code that contains many of these instructions is likely to take more time than it should.
It makes no difference whether the instructions are all of the same type or a mixture of the
types listed above.

The problem does not occur with µops that can go through only one of the ports, e.g.
MULPS, COMISS, PMULUDQ. Neither does the problem occur with µops that can go through
both ports where the ALU's are duplicated, e.g. MOVAPS, PADDW.

A further complication which has less practical importance but reveals something about the
hardware design is that instructions such as PMULLW and ADDPS cannot execute
simultaneously, even though they are using different execution units.

The poor performance of code that contains many instructions of the types listed above is a
consequence of a bad design. The mechanism was no doubt implemented in order to
improve performance. Of course it is possible to find examples where this mechanism
actually does improve performance, and the designers may have had a particular example
in mind. But the improvement in performance is only seen in code that has few of the
instructions listed above and many instructions that occupy port 1. Such examples are rare
and the advantage is limited because it applies only to code that has few of these
instructions. The loss in performance is highest when many, but not all, of the instructions
are of the types listed above. Such cases are very common in floating point code. The
critical innermost loop in floating point code is likely to have many additions. The
performance of floating point code is therefore likely to suffer quite a lot because of this poor
design.

It is very difficult for the programmer to do anything about this problem because you cannot
control the reordering of µops in the CPU pipeline. Using integers instead of floating point
numbers is rarely an option. A loop which does nothing but floating point additions can be
improved by unrolling because this reduces the relative cost of the loop overhead
instructions, which suffer from the blocked ports. A loop where only a minority of the
instructions are floating point additions can sometimes be improved by reordering the
instructions so that no two FADD µops are issued to the ports in the same clock cycle. This
requires a lot of experimentation and the result can be sensitive to the code that comes
before the loop.

The above explanation of the poor performance of code that contains many floating point
additions is based on systematic experimentation but no irrefutable evidence. My theory is
based on the following observations:

 67

• The phenomenon is observed for all instructions that generate µops which can go to
either port 0 or port 1, but have only one execution unit.

• The phenomenon is not observed for µops that can go to only one of the two ports.
For example, the problem disappears when ADDPS instructions are replaced by
MULPS.

• The phenomenon is not observed for µops that can go to both ports where the
execution unit is duplicated so that two µops can execute simultaneously.

• Tests are performed with two nested loops where the inner loop contains many
floating point additions and the outer loop measures the number of clock cycles used
by the inner loop. The clock count of the inner loop is not always constant but often
varies according to a periodic pattern. The period depends on small details in the
code. Periods as high as 5 and 9 have been observed. These periods cannot be
explained by any of the alternative theories I could come up with.

• All the test examples are of course designed to be limited by execution port
throughput rather than by execution latencies.

• The information about which µops go to which ports and execution units is obtained
by experiments where a particular port or execution unit is saturated.

6.12 Retirement
The retirement station on the PM works exactly the same way as on PPro, P2 and P3. The
retirement station can handle three fused µops per clock cycle. Taken jumps can only retire
in the first of the three slots in the retirement station. The retirement station will therefore
stall for one clock cycle if a taken jump happens to fall into one of the other slots. The
number of fused µops in small loops should therefore preferably be divisible by three. See
p. 49 for details.

6.13 Partial register access
The PM can store different parts of a register in different temporary registers in order to
remove false dependences. For example:

; Example 6.6. Partial registers
mov al, [esi]
inc ah

Here, the second instruction does not have to wait for the first instruction to finish because
AL and AH can use different temporary registers. AL and AH are stored into each their part
of the permanent EAX register when the µops retire.

A problem occurs when a write to a part of a register is followed by a read from the whole
register:

; Example 6.7. Partial register problem
mov al, 1
mov ebx, eax

On PM model 9, the read from the full register (EAX) has to wait until the write to the partial
register (AL) has retired and the value in AL has been joined with whatever was in the rest
of EAX in the permanent register. This is called a partial register stall. The partial register
stalls on PM model 9 are the same as on PPro. See p. 50 for details.

 68

On the later PM model D, this problem has been solved by inserting extra µops to join the
different parts of the register. I assume that the extra µops are generated in the ROB-read
stage. In the above example, the ROB-read will generate an extra µop that combines AL
and the rest of EAX into a single temporary register before the MOV EBX,EAX instruction.
This takes one or two extra clock cycles in the ROB-read stage, but this is less than the 5-6
clock penalty of partial register stalls on previous processors.

The situations that generate extra µops on PM model D are the same as the situations that
generate partial register stalls on the earlier processors. Writes to the high 8-bit registers
AH, BH, CH, DH generate two extra µops, while writes to the low 8-bit or 16-bit part of a
register generate one extra µop. Example:

; Example 6.8a. Partial register access
mov al, [esi]
inc ax ; 1 extra uop for read ax after write al
mov ah, 2
mov bx, ax ; 2 extra uops for read ax after write ah
inc ebx ; 1 extra uop for read ebx after write ax

The best way to prevent the extra µops and the stalls in ROB-read is to avoid mixing
register sizes. The above example can be improved by changing it to:

; Example 6.8b. Partial register problem avoided
movzx eax, byte ptr [esi]
inc eax
and eax, 0ffff00ffh
or eax, 000000200h
mov ebx, eax
inc ebx

Another way avoid the problem is to neutralize the full register by XOR'ing it with itself:

; Example 6.8c. Partial register problem avoided
xor eax, eax
mov al, [esi]
inc eax ; No extra uop

The processor recognizes the XOR of a register with itself as setting it to zero. A special tag
in the register remembers that the high part of the register is zero so that EAX = AL. This
tag is remembered even in a loop:

; Example 6.9. Partial register problem avoided in loop
 xor eax, eax
 mov ecx, 100
LL: mov al, [esi]
 mov [edi], eax ; No extra uop
 inc esi
 add edi, 4
 dec ecx
 jnz LL

The rules for preventing extra µops by neutralizing a register are the same as the rules for
preventing partial register stalls on previous processors. See p. 51 for details.

(Literature: Performance and Power Consumption for Mobile Platform Components Under
Common Usage Models. Intel Technology Journal, vol. 9, no. 1, 2005).

 69

Partial flags stall
Unfortunately, the PM doesn't generate extra µops to prevent stalls on the flags register.
Therefore, there is a stall of 4-6 clock cycles when reading the flags register after an
instruction that modifies part of the flags register. Examples:

; Example 6.10. Partial flags stalls
inc eax ; Modifies zero flag and sign flag, but not carry flag
jz L1 ; No stall, reads only modified part
jc L2 ; Stall, reads unmodified part
lahf ; Stall, reads both modified and unmodified bits
pushfd ; Stall, reads both modified and unmodified bits

The above stalls can be removed by replacing INC EAX by ADD EAX,1 (modifies all
flags) or LEA EAX,[EAX+1] (modifies no flags). Avoid code that relies on the fact that
INC or DEC leaves the carry flag unchanged.

There is also a partial flags stall when reading the flags after a shift instruction with a count
different from 1:

; Example 6.11. Partial flags stalls after shift
shr eax, 1
jc l1 ; No stall after shift by 1
shr eax, 2
jc l2 ; Stall after shift by 2
test eax, eax
jz l3 ; No stall because flags have been rewritten

See p. 52 for details about partial flags stalls.

6.14 Store forwarding stalls
Store forwarding stalls in the PM are the same as in previous processors. See p. 53 for
details.

; Example 6.12. Store forwarding stall
mov byte ptr [esi], al
mov ebx, dword ptr [esi] ; Stall

6.15 Bottlenecks in PM
It is important, when optimizing a piece of code, to find the limiting factor that controls
execution speed. Tuning the wrong factor is unlikely to have any beneficial effect. In the
following paragraphs, I will explain each of the possible limiting factors. You have to
consider each factor in order to determine which one is the narrowest bottleneck, and then
concentrate your optimization effort on that factor until it is no longer the narrowest
bottleneck. As explained before, you have to concentrate on only the most critical part of the
program - usually the innermost loop.

Memory access
If the program is accessing large amounts of data, or if the data are scattered around
everywhere in the memory, then you will have many data cache misses. Accessing
uncached data is so time consuming that all other optimization considerations are
unimportant. The caches are organized as aligned lines of 64 bytes each. If one byte within
an aligned 64-byte block has been accessed, then you can be certain that all 64 bytes will
be loaded into the level-1 data cache and can be accessed at no extra cost. To improve
caching, it is recommended that data that are used in the same part of the program be
stored together. You may align large arrays and structures by 64. Store local variables on
the stack if you don't have enough registers. The PM has four write ports. Having more than

 70

four writes immediately after each other can slow down the process by a few clock cycles,
especially if there are memory reads simultaneously with the writes. Non-temporal writes to
memory are efficient on PM. You may use MOVNTI, MOVNTQ and MOVNTPS for scattered
writes to memory if you don't expect to read again soon from the same cache line.

The Core Solo/Duo has an improved data prefetching mechanism that predicts future
memory reads.

Instruction fetch and decode
The instructions should be organized according to the 4-1-1 rule if you aim at a throughput
of 3 µops per clock cycle. Remember that the 4-1-1 pattern can be broken at IFETCH
boundaries. Avoid instructions with more than one prefix. Avoid instructions with 16-bit
immediate operand in 32-bit mode. See p. 57.

Micro-operation fusion
µop fusion and the stack engine makes it possible to get more information into each µop.
This can be an advantage if decoding or the 3 µops/clock limit is a bottleneck. Floating point
registers allow µop fusion for read-modify instructions, but XMM registers do not. Use
floating point registers instead of XMM registers for floating point operations if you can take
advantage of µop fusion.

Register read stalls
Be aware of register read stalls if a piece of code has more than three registers that it often
reads but seldom writes to. See p. 63.

There is a tradeoff between using pointers and absolute addresses. Object oriented code
typically accesses most data through frame pointers and 'this' pointers. The pointer
registers are possible sources of register read stalls because they are often read but seldom
written to. Using absolute addresses instead of pointers has other disadvantages, however.
It makes the code longer so that the cache is used less efficiently and the problem with
IFETCH boundaries is increased.

Execution ports
The unfused µops should be distributed evenly between the five execution ports. Port 0 and
1 are likely to be bottlenecks in a code that has few memory operations. You may move
some of the load from port 0 and 1 to port 2 by replacing move-register-register and move
register-immediate instructions by move-register-memory instructions if this can be done
without cache misses.

Instructions using the 64-bit MMX registers are no less efficient than instructions using the
32-bit integer registers on PM. You may use the MMX registers for integer calculations if
you are out of integer registers. The XMM registers are slightly less efficient because they
do not use µop fusion for read-modify instructions. MMX and XMM instructions are slightly
longer than other instructions. This may increase the problem with IFETCH boundaries if
decoding is a bottleneck. Remember that you cannot use floating point registers and MMX
registers in the same code.

Code with many floating point additions is likely to stall port 0 and 1 because of the design
problem discussed on page 65.

Stack synchronization µops go to port 0 or 1. The number of such µops can sometimes be
reduced by replacing MOV instructions relative to the stack pointer by PUSH and POP
instructions. See page 61 for details.

Partial register access generates extra µops, see page 68.

 71

Execution latencies and dependence chains
The execution units have reasonably low latencies on the PM, and many operations are
faster than on P4.

The performance is likely to be limited by execution latencies when the code has long
dependence chains with slow instructions.

Avoid long dependence chains and avoid memory intermediates in dependence chains. A
dependence chain is not broken by an XOR or PXOR of a register with itself.

Partial register access
Avoid mixing register sizes and avoid using the high 8-bit registers AH, BH, CH, DH. Be
aware of partial flags stalls when reading the flags after instructions that modify some of the
flag bits and leave other flag bits unchanged, and after shifts and rotates. See p. 69.

Branch prediction
Branch prediction is more advanced in PM than in other processors. Loops with a constant
repeat count of up to 64 are predicted perfectly. Indirect jumps and calls with varying targets
can be predicted if they follow a regular pattern or if they are well correlated with preceding
branches. But the branch target buffer (BTB) is much smaller than on other processors.
Therefore, you should avoid unnecessary jumps in order to reduce the load on the BTB.
Branch prediction will be good if most of the processor time is spent in a small piece of code
with relatively few branches. But branch prediction will be poor if the processor time is
distributed over large sections of code with many branches and no particular hot spot. See
p. 22.

Retirement
The retirement of taken branches can be a bottleneck in small loops with many branches.
See p. 49.

 72

7 Core 2 pipeline
The microarchitecture named "Intel Core 2" is a further development of the PM design. The
pipeline has been expanded to handle four micro-operations per clock cycle and the
execution units have been expanded from 64 bits to 128 bits. A 45 nm version introduced in
2008 differs from the previous 65 nm version by faster division and shuffling operations.

Core 2 is now the basis of all Intel's x86 processors, including portable, desktop and server
processors. The Intel Core 2 processors have two or more CPU cores with separate level-1
caches and a shared level-2 cache. The x64, SSE3 and Supplementary SSE3 instruction
sets are supported in all Core 2 processors. SSE4.1 is supported in the 45 nm versions.

The Core2 has the same power-saving features as the PM. It can turn off certain parts of
the internal buses, execution units, etc. when they are not used. The clock frequency is
reduced when the workload is small. These power-saving features have the positive side
effect that the maximum clock frequency can be increased without overheating the chip.

7.1 Pipeline
The details of the Core 2 pipeline have not been revealed. The following discussion is
therefore based mainly on my own measurements.

The pipeline of the Intel Core 2 microarchitecture is very similar to the Pentium M and Core
Duo, but with more of everything in order to increase the throughput from 3 to 4 µops per
clock cycle. The advanced power saving technology introduced with the PM makes it
possible to use a high clock frequency without overheating the chip. The trace cache of the
P4 has been trashed in favor of a traditional code cache.

The pipeline is shorter than on the P4. The new microarchitecture allegedly has a pipeline of
only fourteen stages in order to reduce power consumption, speculative execution and
branch misprediction penalty. However, my measurements indicate that the pipeline is
approximately two stages longer in the Core2 than in PM. This estimate is based on the fact
that the branch misprediction penalty is measured to at least 15, which is 2 clock cycles
more than on PM. The time a register stays in the ROB, as measured by register read stalls
(p. 44), is approximately 2 clock cycles more than on PM, and partial flags stalls are at least
one clock cycle longer on Core2 than on PM. These measurements are in accordance with
the observation that instruction fetching and retirement have been improved. It is likely that
one extra pipeline stage has been used for improving instruction fetch and predecoding, and
one for improving retirement.

The reorder buffer has 96 entries, and the reservation station has 32 entries, according to
Intel publications.

7.2 Instruction fetch and predecoding
Instruction fetching in the Core2 has been improved over previous Intel processors by
adding a queue between branch prediction and instruction fetching. This can remove the
delay bubble at taken branches in many cases. Unfortunately, the bandwidth is still limited
to 16 bytes per clock cycle. The limiting bottleneck is the predecoder, as explained below.

The instruction decoding machinery is split between a predecoder and a decoder, with a
queue in between. This queue has an effective size of 64 bytes. The main purpose of the
predecoder is to detect where each instruction begins. This is quite difficult because each
instruction can have any length from one to fifteen bytes and it can be necessary to inspect
several bytes of an instruction in order to determine its length and know where the next
instruction begins. The predecoders also identify instruction prefixes and other components
of each instruction.

 73

The maximum throughput of the predecoders is 16 bytes or 6 instructions per clock cycle,
whichever is smallest. The throughput of the rest of the pipeline is typically 4 instructions per
clock cycle, or 5 in case of macro-op fusion (see below, page 76). The throughput of the
predecoders is obviously less than 4 instructions per clock cycle if there are less than 4
instructions in each 16-bytes block of code. The average instruction length should therefore
preferably be less than 4 bytes on average.

The predecoder throughput can also be reduced if there are more than 6 instructions in a
16-bytes block of code. The reason for this is that the predecoder will not load a new 16-
bytes block of code until the previous block is exhausted. If there are 7 instructions in a 16-
bytes block then the predecoders will process the first 6 instructions in the first clock cycle
and 1 instruction in the next clock cycle. This gives an average predecoder throughput of
3.5 instructions per clock cycle, which is less than desired. The optimal number of
instructions per 16-bytes block of code is therefore 5 or 6, corresponding to an average
instruction length of approximately 3. Any instruction that crosses a 16-bytes boundary will
be left over until the next 16-bytes block is processed. It may be necessary to adjust
instruction lengths in order to obtain the optimal number of instructions per 16-bytes block.
See manual 2: "Optimizing subroutines in assembly language" for a discussion of how to
make instructions shorter or longer.

Loopback buffer
The decoder queue in Core2 can be used as a 64-bytes loop buffer. The predecoded
instructions in the decoder queue can be reused in case a branch instruction loops back to
an instruction that is still contained in the buffer. Predecoding is therefore not a bottleneck
for a small loop that is completely contained in the 64-bytes buffer.

The loop buffer works almost as a 64 bytes level-0 cache, organized as 4 lines of 16 bytes
each. A loop that can be completely contained in four aligned blocks of 16 bytes each, can
execute at a rate of up to 32 bytes of code per clock cycle. The four 16-bytes blocks do not
even have to be consecutive. A loop that contains jumps (but not calls and returns) can still
exceed the predecoder throughput if all the code in the loop can be contained in four
aligned 16-bytes blocks.

The important lesson we can learn from this is that critical loops should preferably have less
than 64 bytes of code if predecoding is a bottleneck. The loop entry should be aligned by 16
if the size is between 50 and 64 bytes in order to make sure that it fits into four aligned 16-
bytes blocks. It may be advantageous to break up a loop that is bigger than 64 bytes into
several smaller loops that are no more than 64 bytes each if predecoding is a bottleneck.

Bigger loops and critical subroutine entries may be aligned by 16.

The Core2 version that is code named Nehalem has the loop buffer after the decoders. This
loop buffer can contain 28 µops.

Length-changing prefixes
The instruction length decoder has a problem with certain prefixes that change the meaning
of the subsequent opcode bytes in such a way that the length of the instruction is changed.
This is known as length-changing prefixes.

For example, the instruction MOV AX,1 has an operand size prefix (66H) in 32-bit and 64-
bit mode. The same code without operand size prefix would mean MOV EAX,1. The MOV
AX,1 instruction has 2 bytes of immediate data to represent the 16-bit value 1, while MOV
EAX,1 has 4 bytes of immediate data to represent the 32-bit value 1. The operand size
prefix therefore changes the length of the rest of the instruction. The predecoders are
unable to resolve this problem in a single clock cycle. It takes typically 6 clock cycles extra
to recover from this error. It is therefore very important to avoid such length-changing

 74

prefixes. The Intel documents say that the penalty for a length-changing prefix is increased
to 11 clock cycles if the instruction crosses a 16-bytes boundary, but I cannot confirm this.
My measurements show a penalty of 6 clock cycles extra in this case as well. The penalty
may be less than 6 clock cycles if there are more than 4 instructions in a 16-bytes block.

There are two prefixes that can cause this problem. This is the operand size prefix (66H)
and the seldom used address size prefix (67H). The operand size prefix will change the
length of an instruction and cause a delay in 32-bit and 64-bit mode in the following cases:

• If a MOV or TEST instruction has a 16-bit destination and an immediate constant as
source. For example MOV AX,1. This should be replaced by MOV EAX,1.

• If any other instruction has a 16-bit destination and an immediate constant as source
and the constant cannot be represented as an 8-bit sign-extended integer. For
example ADD AX,200. This should be replaced by ADD EAX,200. But ADD
AX,100 does not have a length-changing prefix because 100 is within the range of
8-bit signed integers.

• If one of the instructions NEG, NOT, DIV, IDIV, MUL and IMUL with a single operand
has a 16-bit operand and there is a 16-bytes boundary between the opcode byte and
the mod-reg-rm byte. These instructions have a bogus length-changing prefix
because these instructions have the same opcode as the TEST instruction with a 16-
bit immediate operand, and the distinction between the TEST instruction and the
other instructions is contained in the reg bits of the mod-reg-rm byte. Therefore, the
decoder cannot determine if the prefix is length-changing or not until it has read the
next 16-bytes block of code. You may want to avoid using the 16-bit versions of
these instructions if you cannot control where the 16-bytes boundaries are.

These rules also apply to 32-bit operands in 16-bit mode. The disassembler in the objconv
utility can be used for checking for these conditions.

The address size prefix (67H) will always cause a delay in 16-bit and 32-bit mode on any
instruction that has a mod/reg/rm byte, even if it doesn't change the length of the instruction.
The only instructions on which the 67H prefix makes sense and does not cause a stall are
JCXZ/JECXZ/JRCXZ, string instructions and XLAT. The address size prefix is never length-
changing in 64-bit mode and causes no delay in this mode. Address size prefixes are
generally regarded as obsolete and should be avoided.

The REX.W prefix (48H) can also change the length of an instruction in the case of a MOV
instruction with a 64-bit immediate operand, but the predecoder can resolve this case
without penalty.

The penalty for length-changing prefixes occurs only the first time in a loop that fits into the
64-bytes loopback buffer because this buffer contains predecoded instructions.

7.3 Instruction decoding
Instruction decoding in the Core2 is very similar to previous processors, as explained on
page 40, but extended from three to four decoders so that it can decode four instructions
per clock cycle. The first decoder can decode any instruction that generates up to 4 µops in
one clock cycle. The other three decoders can handle only instructions that generate no
more than one µop each. There are no other restrictions on which instructions these
decoders can handle. The maximum output of the decoders is 7 µops per clock cycle if
instructions are organized in a 4-1-1-1 pattern so that the first decoder generates four µops
and the other three decoders generate one µop each. The output from the decoders is a
minimum of 2 µops per clock cycle if all the instructions generate 2 µops each. In this case,

 75

only the first decoder is active because the other three decoders cannot handle instructions
that generate more than one µop. If the code contains many instructions that generate 2-4
µops each then these instructions should be spaced with two or three single-µop
instructions between in order to optimize decoder throughput. Instructions that generate
more than 4 µops use microcode ROM and take multiple clock cycles to decode. The
number of µops generated by each instruction is listed in manual 4: "Instruction tables". The
number that is relevant to decoder throughput is the one listed under "µops fused domain".

The decoders can read two 16-bytes blocks of code per clock cycle from the 64-bytes buffer
so that a total of 32 bytes can be decoded in one clock cycle. But the output of the
predecoders is limited to 16 bytes or less per clock cycle so that the decoders can only
receive more than 16 bytes in one clock cycle in linear code if they processed less than 16
bytes in the preceding clock cycle. The high decode rate of 32 bytes per clock cycle can be
obtained continuously in a small loop that is fully contained in the 64-bytes buffer so that the
predecoded information can be reused. But in all other cases, the throughput is limited by
the predecoders.

Previous processors had a limitation on the number of instruction prefixes that the decoders
can handle per clock cycle. The Core2 has no such limitation. Instructions with any number
of prefixes can be decoded by any of the four decoders in one clock cycle. The only
limitation is set by the instruction set definition which limits the length of instruction plus
prefixes to 15 bytes. Thus, it is possible to decode a one-byte instruction with 14 prefixes in
a single clock cycle. No instruction needs so many prefixes, of course, but redundant
prefixes can be used instead of NOP's as fillers for aligning a subsequent loop entry. See
manual 2: "Optimizing subroutines in assembly language" for a discussion of redundant
prefixes.

7.4 Micro-op fusion
The Core2 uses µop fusion in the same way as the PM, as described on page 59. Some
instructions that need two µops in the execution units can use the µop fusion technique to
keep these two µops together as one through most of the pipeline in order to save pipeline
bandwidth. The fused µop is treated as two µops by the scheduler and submitted to two
different execution units, but it is treated as one µop in all other stages in the pipeline and
uses only one entry in the reorder buffer. The decoding throughput is also increased by µop
fusion because a fused µop can be generated by those decoders that can handle only
single-µop instructions.

There are two kinds of µop fusion, read-modify fusion and write fusion. A read-modify
instruction needs one µop for reading a memory operand and another µop for doing a
calculation with this operand. For example, ADD EAX,[MEM] needs one µop for reading
MEM and one for adding this value to EAX. These two µops can be fused into one. A write
instruction needs one µop for calculating the address and one for writing to that address.
For example, MOV [ESI+EDI],EAX needs one µop for calculating the address
[ESI+EDI] and one for storing EAX to this address. These two µops are fused together.

The Core2 can use µop fusion in more cases than the PM can. For example, read-modify-
write instructions can use both read-modify fusion and write fusion. Most XMM instructions
can use µop fusion, but not all.

A fused µop can have three input dependencies, while an unfused µop can have only two. A
write instruction may have three input dependencies, for example MOV [ESI+EDI],EAX.
This is the reason why write instructions are split into two µops, while read instructions have
only one µop.

 76

You can see which instructions use µop fusion by looking at the tables in manual 4:
"Instruction tables". Instructions with µop fusion has a higher number of µops listed under
"unfused domain" than under "fused domain".

7.5 Macro-op fusion
The Core2 can also fuse two instructions into one µop in a few cases. This is called macro-
op fusion. The Core2 will fuse a compare or test instruction with a subsequent conditional
jump instruction into a single compare-and-branch µop in certain cases. The compare-and-
branch µop is not split in two at the execution units but executed as a single µop by the
branch unit at execution port 5. This means that macro-op fusion saves bandwidth in all
stages of the pipeline from decoding to retirement. Macro-op fusion does not help, however,
if predecoding is the bottleneck.

Macro-op fusion is only possible if all of the following conditions are satisfied:

• The first instruction is a CMP or TEST instruction and the second instruction is a
conditional jump instruction except JECXZ and LOOP.

• The CMP or TEST instruction can have two register operands, a register and an
immediate operand, a register and a memory operand, but not a memory and an
immediate operand.

• 65 nm processors and Penryn can do macro-op fusion only in 16 and 32-bit mode.
Nehalem can also do it in 64-bit mode.

• The 65 nm version of Core2 can do macro-op fusion only for unsigned branch
instructions (JB, JC, JBE, JE, JZ, JNE, JNZ, JA, JAE, JNC) if the preceding
instruction is CMP but allows fusion of signed branches with TEST, including useless
combinations. The 45 nm version can do macro-op fusion for all branch instructions,
including signed branch instructions: JG, JL, JO, JP, etc. following CMP.

• There can be no other instructions between the two instructions (branch hint prefixes
are allowed, but ignored).

• The branch instruction does not start at a 16-bytes boundary or cross a 16-bytes
boundary.

• If more than one such instruction pair reaches the four decoders in the same clock
cycle then only the first pair is macro-fused.

Any one of the four decoders can make a macro-op fusion, but not simultaneously. Thus,
we see that the four decoders can handle a maximum of five instructions in a single clock
cycle in case of macro-op fusion.

It is possible to have both micro-op fusion and macro-op fusion at the same time. A CMP or
TEST instruction with a memory operand and a register operand followed by a branch
instruction can generate a single micro-macro-fused µop containing all the three operations:
read, compare, and branch. However, there is a limit to how much information a µop can
contain. This limit is probably defined by the size of a reorder-buffer (ROB) entry. There is
not enough space for storing both an immediate operand, the address of a memory
operand, and the address of a branch target in the same ROB entry. My guess is that this is
the reason why you can't have macro-op fusion with both a memory operand and an
immediate operand. This may also be the reason why macro-op fusion doesn't work in 64-
bit mode. 64-bit branch addresses take more space in the ROB entry.

 77

The reason why certain combinations of CMP and branch instructions do not fuse in the 65
nm version is more obscure. The signed branch instructions need to test the overflow flag,
which is slightly more complicated to calculate than the other flags, but this doesn't explain
why a CMP cannot pair with a branch instruction that reads the sign flag. Some of the branch
instructions that can be paired with TEST, but not with CMP, are useless in this combination
because the carry flag and the overflow flag are always zero after a TEST instruction.

The programmer should keep CMP or TEST instructions together with the subsequent
conditional jump rather than scheduling other instructions in-between; and there should
preferably be at least three other instructions between one compare-branch pair and the
next compare-branch pair in order to take advantage of macro-op fusion. The branch
instruction after a CMP should preferably be of an unsigned type if it can be verified that
none of the operands can be negative.

The fact that macro-op fusion doesn't work in 64-bit mode should not make any programmer
refrain from using 64-bit mode. The performance gain due to macro-op fusion is unlikely to
be more than a few percent, and only if µop throughput is a bottleneck. Macro-op fusion has
no effect in the much more likely case that the bottleneck lies elsewhere.

7.6 Stack engine
The Core2 has a dedicated stack engine which works exactly the same way as on the PM,
as described on page 61, with necessary adjustments for the larger pipeline.

The modification of the stack pointer by PUSH, POP, CALL and RET instructions is done by a
special stack engine, which is placed immediately after the decoding stage in the pipeline
and before the out-of-order core. This relieves the pipeline from the burden of µops that
modify the stack pointer. This mechanism has two values of the stack pointer: one in the
stack engine and another one in the register file and the out-of-order core. These two stack
pointers may need to be synchronized if a sequence of PUSH, POP, CALL and RET
instructions is followed by an instruction that reads or modifies the stack pointer directly,
such as ADD ESP,4 or MOV EAX,[ESP+8]. The stack engine inserts an extra stack-
synchronization µop in every case where synchronization of the two stack pointers is
needed. See page 61 for a more detailed explanation.

The stack synchronization µops can sometimes be avoided by not mixing instructions that
modify the stack pointer through the stack engine and instructions that access the stack
pointer in the out-of-order execution units. A sequence that contains only instructions from
one of these two categories will not need stack synchronization µops, but a sequence that
mixes these two categories will need these extra µops. For example, it is advantageous to
replace an ADD ESP,4 instruction after a function call by POP ECX if the preceding
instruction was a RET and the next instruction touching the stack pointer is a PUSH or CALL.

It may be possible to avoid stack synchronization µops completely in a critical function if all
function parameters are transferred in registers and all local variables are stored in registers
or with PUSH and POP. This is most realistic with the calling conventions of 64-bit Linux. Any
necessary alignment of the stack can be done with a dummy PUSH instruction in this case.

7.7 Register renaming
All integer, floating point, MMX, XMM, flags and segment registers can be renamed. The
floating point control word can also be renamed.

Register renaming is controlled by the register alias table (RAT) and the reorder buffer
(ROB), shown in figure 5.1. The µops from the decoders and the stack engine go to the
RAT via a queue and then to the ROB-read and the reservation station. The RAT can

 78

handle 4 µops per clock cycle. The RAT can rename four registers per clock cycle, and it
can even rename the same register four times in one clock cycle.

7.8 Register read stalls
The Core2 is subject to the same kind of register read stalls as the PM and earlier
processors, as explained on page 44. The permanent register file has three read ports on
the Core2.

The ROB-read stage can read no more than three different registers from the permanent
register file per clock cycle. This applies to all general purpose registers, the stack pointer,
the flags register, floating point registers, MMX registers and XMM registers. An XMM
register counts as one on the Core2, while it counts as two 64-bit registers on previous
processors. The same register can be read any number of times without causing stalls.

The first two of the three register read ports can read registers for instruction operands,
base pointers, and index pointers. The third read port can read only registers used as index
pointers.

Registers that have been written to recently can be read directly from the ROB if they have
not yet passed the ROB-writeback stage. Registers that can be read directly from the ROB
do not need the read ports on the register file. My measurements indicate that it takes
approximately 6 clock cycles for a µop to pass from the ROB-read stage to the ROB-
writeback stage. This means that a register can be read without problems if it has been
modified within the last 6 clock cycles. With a throughput of 4 µops per clock cycle, you can
assume that a register can be read without using the register read ports if it has been
modified within the last 24 µops unless the pipeline has been stalled for any reason in the
meantime.

A unfused µop can contain up to two register reads, and a fused µop can contain up to three
register reads. For example, the instruction ADD EAX,[EBX+ECX] reads register EAX,
EBX and ECX, and then writes register EAX. The decoders can send up to four fused µops to
the ROB-read stage in one clock cycle. The maximum number of register reads in a µop
quartet is therefore twelve. The ROB-read stage may need four clock cycles to read these
twelve registers in the worst case where all registers are in the permanent register file.

; Example 7.1a. Register read stall
L: mov eax, [esi+ecx]
 mov [edi+ecx], ebx
 add ecx, 4
 js L

This loop has a register read stall because there are three registers that are read inside the
loop, but not written to: ESI, EDI and EBX. ECX does not need a read port because it has
been modified recently. There are three register read ports, but the third read port can only
be used for index registers, and none of the three read-only registers are used as index
registers. Note that the SIB byte of the instruction code makes a distinction between base
and index register. ESI and EDI are base registers in example 7.1a, while ECX is index
register. An index register can have a scale factor, while a base register cannot.

A slight modification of the code can make EDI an index register so that the third read port
can be used:

; Example 7.1b. Register read stall removed
L: mov eax, [ecx+esi*1]
 mov [ecx+edi*1], ebx
 add ecx, 4
 js L

 79

Here, we have applied the scale factor *1 to ESI and EDI to make sure the assembler uses
ESI and EDI rather than ECX as the index register. ESI or EDI can now be read by the
third register read port so that the stall disappears. Example 7.1b takes 1 clock cycle per
iteration, while example 7.1a takes two clock cycles.

It is difficult to predict which µops will go into the ROB-read stage together. The µops arrive
in order, but you don't know where each quartet begins unless the decoders have been
stalled. A register read stall can therefore occur if more than two or three registers are read
in any four consecutive µops and these registers have not been written to recently.

In example 7.1a it appears that ESI comes from the first of the three read ports so that the
stall cannot be removed by making ESI an index register. Removing register read stalls
often requires some experimentation. The Core2 has a performance monitor counter that
you can use for detecting register read stalls.

It is possible to change a base pointer to an index register in instructions like
mov eax,[ebx]. But this should be done only if there is experimental evidence that it
prevents a register read stall, because the instruction mov eax,[ebx*1] is five bytes
longer than mov eax,[ebx] (four bytes for a base address of zero, and one SIB byte).
The only integer register than cannot be used as index register is the stack pointer ESP or
RSP.

Other methods for removing register read stalls are to minimize the number of registers that
are often read from but rarely written to, replacing read-only registers by constants or
memory operands, and to organize the code so as to limit the distance between writing to a
register and subsequently reading from the same register. The stack pointer, frame pointer
and 'this' pointer are common examples of registers that are often read but rarely modified.

7.9 Execution units
The execution units of the Core2 have been expanded a lot over previous processors.
There are six execution ports. Port 0, 1 and 5 are for arithmetic and logic operations (ALU),
port 2 for memory read, port 3 for write address calculation, and port 4 for memory write
data. This gives a maximum throughput of six unfused µops per clock cycle.

All execution ports support full 128 bit vectors. Most ALU operations have a latency of 1
clock cycle. The different units are listed in table 7.1 below. All three ALU ports can handle
128-bit moves and Boolean operations. All three ports can handle additions on general
purpose registers. Port 0 and 5 can also handle integer vector additions.

There are separate units for integer multiplication and floating point multiplication. The
integer multiplier on port 1 is fully pipelined with a latency of 3 and a throughput of 1 full
vector operation per clock cycle. The floating point multiplier on port 0 has a latency of 4 for
single precision and 5 for double and long double precision. The throughput of the floating
point multiplier is 1 operation per clock cycle, except for long double precision. The floating
point adder is connected to port 1. It has a latency of 3 and is fully pipelined.

Integer division uses the floating point division unit. This is the only unit that is not pipelined.

The jump unit on port 5 handles all jump and branch operations, including the macro-fused
compare-and-branch operations.

The floating point unit connected to port 0 and 1 handles all operations on the floating point
stack registers and most floating point operations on XMM registers. Floating point XMM
move, Boolean, and most floating point shuffle operations are done by the integer unit. For

 80

example, MOVAPS, MOVAPD and MOVDQA are identical and all carried out by the integer unit.
You may prefer to use the shortest of these instructions, which is MOVAPS.

The arithmetic/logic execution units are well distributed between port 0, 1 and 5. This makes
it possible to execute three vector instructions per clock cycle, for example floating point
vector multiplies on port 0, floating point vector additions on port 1, and a floating point
moves on port 5.

Execution
port

Execution
unit

Subunit Max data size,
bits

Latency,
clocks

0 int move 128 1
1 int move 128 1
5 int move 128 1
0 int add 128 1
1 int add 64 1
5 int add 128 1
0 int Boolean 128 1
1 int Boolean 128 1
5 int Boolean 128 1
1 int multiply 128 3
0 int shift 128 1
5 int shift 64 1
0 int pack 128 1
5 int shuffle 128 1
5 int jump 64 1

0 float fp stack move 80 1
1 float fp add 128 3
0 float fp mul 128 4-5
0 float fp div and sqrt 128 > 5
0 float fp-fp convert 128 1
1 float fp-int convert 128 3

2 int memory read 128 2
3 store store address 64 1
4 store store data 128 3
Table 7.1. Execution units in Core2

The latency for integer vector operations is the same as for operations in general purpose
registers. This makes it possible to use MMX registers or XMM registers for simple integer
operations when you are out of general purpose registers. The vector operations are
supported by fewer execution ports, though.

Data bypass delays
There is an extra latency of one clock cycle when the output of a µop in the integer unit is
used as input for a µop in the floating point unit, or vice versa. This is illustrated in the
following example.

; Example 7.2a. Delay for data transfer between execution units
.data
align 16
signbits label xmmword ; Used for changing sign
dq 2 dup (8000000000000000H) ; Two qwords with sign bit set

.code

 81

movaps xmm0, [a] ; Unit = int, Latency = 2
mulpd xmm0, xmm1 ; Unit = float, Latency = 5 + 1
xorps xmm0, [signbits] ; Unit = int, Latency = 1 + 1
addpd xmm0, xmm2 ; Unit = float, Latency = 3 + 1

In example 7.2a there are three additional latencies for moving data back and forth between
the integer and floating point units. This code can be improved by reordering the instructions
so that the number of switches between the integer and floating point units is reduced:

; Example 7.2b. Delay for data transfer between execution units
.code
movaps xmm0, [a] ; Unit = int, Latency = 2
xorps xmm0, [signbits] ; Unit = int, Latency = 1
mulpd xmm0, xmm1 ; Unit = float, Latency = 5 + 1
addpd xmm0, xmm2 ; Unit = float, Latency = 3

In example 7.2b, we are changing the sign of XMM0 before multiplying with XMM1. This
reduces the number of transitions between the integer and floating point units from three to
one, and the total latency is reduced by 2. (We have used MOVAPS and XORPS instead of
MOVAPD and XORPD because the former instructions are shorter but have the same
functionality).

The load/store unit is closely connected with the integer unit, so that there is no additional
latency when transferring data between the integer unit and the load/store unit. There is a
one clock latency when transferring data from memory (load unit) to the floating point unit,
but there is no additional latency when transferring data from the floating point unit to
memory (store unit). The execution units are listed in the tables in manual 4: "Instruction
tables" where appropriate.

Mixing µops with different latencies
There is a problem when µops with different latencies are issued to the same execution
port. For example:

; Example 7.3. Mixing uops with different latencies on port 0
mulpd xmm1,xmm2 ; Double precision multiply has latency 5
mulps xmm3,xmm4 ; Single precision multiply has latency 4

Assume that the double precision multiplication with a latency of 5 starts at time T and ends
at time T+5. If we attempt to start the single precision multiplication with a latency of 4 at
time T+1 then this would also end at time T+5. Both instructions use port 0. Each execution
port has only one write-back port, which can handle only one result at a time. It is therefore
not possible to end two instructions at the same time. The scheduler will predict and avoid
this clash by delaying the latter instruction to time T+2 so that it ends at time T+6. The cost
is one wasted clock cycle.

This kind of clashes can occur whenever two or more µops issued to the same execution
port have different latencies. The maximum throughput of one µop per clock cycle in each
port can only be obtained when all µops that go to the same port have the same latency. In
the example of floating point multiplications we can maximize the throughput by using the
same precision for all floating point calculations, or by keeping floating point multiplications
with different precisions apart from each other rather than mixing them.

The designers have tried to reduce this problem by standardizing µop latencies. Port 0 can
handle only µops with a latency of 1 or ≥ 4. Port 1 can handle only µops with a latency of 1
or 3. Port 5 can handle only latency 1. Port 2, 3 and 4 handle memory operations and
almost nothing else. There are no µops that use 2 clock cycles in an execution unit.
(Instructions like MOVD EAX,XMM0 have a latency of 2, but this in 1 clock cycle in the
execution unit and 1 extra cycle for travelling from the xmm-integer unit to the gp-integer
unit).

 82

The problem with mixing latencies can also occur at port 1, but less frequently:

; Example 7.4. Mixing uops with different latency on port 1
imul eax,10 ; Port 1. Latency 3
add ebx,ecx ; Port 0,1 or 5. Latency 1
inc ebx ; Port 0,1 or 5. Latency 1

In example 7.4, we cannot issue the INC µop to port 1 two clock cycles after the IMUL µop
because they would both finish at the same time. But the INC µop can be issued to another
port. Therefore, the clash will only occur if port 0 and port 5 are both occupied by something
else at this time. Most of the common single-cycle µops have two or three execution ports to
choose between, including all single-cycle µops that can go to port 1.

7.10 Retirement
The retirement station on the Core2 seems to be more efficient than in the PM. I have not
detected any delays due to bottlenecks in the retirement station on the Core2.

7.11 Partial register access
There are three different ways that the Core2 uses for resolving writes to part of a register.
These three different ways are used for general purpose registers, the flags register, and
XMM registers, respectively.

Partial access to general purpose registers
Different parts of a general purpose register can be stored in different temporary registers in
order to remove false dependences. For example:

; Example 7.5. Partial registers
mov al, [esi]
inc ah

Here, the second instruction does not have to wait for the first instruction to finish because
AL and AH can use different temporary registers. AL and AH are stored into each their part
of the permanent EAX register when the µops retire.

A problem occurs when a write to a part of a register is followed by a read from the whole
register:

; Example 7.6. Partial register problem
mov al, 1
mov ebx, eax

This problem is solved by inserting an extra µop to join the different parts of the register. I
assume that the extra µops are generated in the ROB-read stage. In the above example,
the ROB-read will generate an extra µop that combines AL and the rest of EAX into a single
temporary register before the MOV EBX,EAX instruction. This takes 2 - 3 extra clock cycles
in the ROB-read stage, but this is less than the 5-6 clock penalty of partial register stalls on
processors that don't have this mechanism.

Writes to the high 8-bit registers AH, BH, CH, DH generate two extra µops, while writes to the
low 8-bit or 16-bit part of a register generate one extra µop. See page 68 for examples.

 83

Partial flags stall
Unfortunately, the Core2 doesn't generate extra µops to prevent stalls on the flags register.
Therefore, there is a stall of approximately 7 clock cycles when reading the flags register
after an instruction that modifies part of the flags register. See page 69 for examples.

There is also a partial flags stall when reading the flags after a shift instruction with a count
different from 1. See page 69 for details.

Partial access to XMM registers
An XMM register is never split into its parts in the reorder buffer. Therefore, no extra µops
are needed and there is no partial access stall when writing to part of an XMM register. But
the write has a false dependence on the previous value of the register. Example:

; Example 7.7. Partial access to XMM register
mulss xmm0, xmm1
movss [mem1], xmm0
movss xmm0, xmm2 ; has false dependence on previous value
addss xmm0, xmm3

The MOVSS and MOVSD instructions with register operands write to part of the destination
register and leave the rest of the register unchanged. In example 7.7, the
MOVSS XMM0,XMM2 instruction has a false dependence on the preceding MULSS
instruction because the lower 32 bits of the register cannot be separated from the unused
upper part of the register. This prevents out-of-order execution. The false dependence in
example 7.7 can be removed by replacing MOVSS XMM0,XMM2 with MOVAPS
XMM0,XMM2. Do not use the MOVSS and MOVSD instructions with two register operands
unless it is necessary to leave the rest of the register unchanged.

7.12 Store forwarding stalls
Like previous processors, the Core2 can forward a memory write to a subsequent read from
the same address under certain conditions. This store forwarding will fail in most cases of
misaligned or partial memory references as in previous processors (p. 53), but certain
special cases have been dealt with to allow store forwarding of partial memory operands. A
failed store forwarding will delay the subsequent read by approximately 10 clock cycles.

Store forwarding works if a write to memory is followed by a read from the same address
when the read has the same operand size and the operand has its natural alignment:

; Example 7.8. Successful store-to-load forwarding
mov dword ptr [esi], eax ; esi aligned by 4
mov ebx, dword ptr [esi] ; No stall

The store forwarding also works with misaligned memory addresses if the operand is less
than 16 bytes and does not cross a 64-bytes boundary on 45 nm Core2, or an 8-bytes
boundary on 65 nm Core2.

; Example 7.9. Failed store forwarding because of misalignment
mov dword ptr [esi-2], eax ; esi divisible by 64
mov ebx, dword ptr [esi-2] ; Stall because 64 B boundary crossed

Store forwarding never works if the read has a bigger operand size than the preceding write:

; Example 7.10. Failed store forwarding when read bigger than write
mov dword ptr [esi], eax ; Write lower 4 bytes
mov dword ptr [esi+4], edx ; Write upper 4 bytes
movq mm0, qword ptr [esi] ; Read 8 bytes. Stall

 84

Store forwarding is possible if the read has a smaller operand size than the write and starts
at the same address, and the write operand does not cross a 64-bytes boundary on 45 nm
Core2 or the read operand does not cross an 8 bytes boundary on 65 nm Core2.

; Example 7.11. Store forwarding to smaller read
mov dword ptr [esi], eax ; Write 4 bytes
mov bx, word ptr [esi] ; Successful store forwarding
mov cx, word ptr [esi+2] ; Stall because not same start address

There are a few special cases where store forwarding is possible to a smaller read with a
different start address. These special cases are:

(1) An 8-byte write can be followed by 4-byte reads of each of its halves if the read does not
cross an 8-bytes boundary on 65 nm Core2 or the write does not cross a 64-bytes boundary
on 45 nm Core2.

(2) A 16-byte write can be followed by 8-byte reads of each of its halves and/or 4-byte reads
of each of its quarters if the write is aligned by 16.

; Example 7.12. Store forwarding in special case
movapd xmmword ptr [esi], xmm0 ; Write 16 bytes
fld qword ptr [esi] ; Read lower half. Success
fld qword ptr [esi+8] ; Read upper half. Success
mov eax, dword ptr [esi+12] ; Read last quarter. Success
mov ebx, dword ptr [esi+2] ; Not a quarter operand. Fail

The mechanism for detecting whether store forwarding is possible does not distinguish
between different memory addresses with the same set-value in the cache. This can cause
stalls for failed bogus store forwardings when addresses are spaced a multiple of 4 kb
apart:

; Example 7.13. Bogus store forwarding stall
mov word ptr [esi], ax
mov ebx, dword ptr [esi+800h] ; No stall
mov ecx, dword ptr [esi+1000h] ; Bogus stall

In example 7.13 there is a stall when reading ecx after writing ax because the memory
addresses have the same set-value (the distance is a multiple of 1000h) and a large read
after a small write would give a stall if the addresses were the same.

7.13 Cache and memory access
The level-1 data cache is 32 kB, dual port, 8 way, 64 byte line size. The level-1 code cache
has the same size as the data cache.

There is one level-1 cache for each core, while the level-2 cache and bus interface unit is
shared between the cores. The level-2 combined cache is 2 or 4 MB, 16 ways in the 65 nm
model and 6 MB, 24 ways in the 45 nm model. It is likely that there will be more versions in
the future with different level-2 cache sizes. There is a 256 bit data path between the level-1
and level-2 caches.

The cache latency is 3 and 14-15 clock cycles for the level-1 and level-2 caches,
respectively. Memory bandwidth and latency is significantly better than on previous
processors.

The capability of reordering memory accesses is allegedly improved so that a memory read
can be executed speculatively before a preceding write that is expected to go to a different
address before the address is known with certainty.

 85

The data prefetchers able to automatically prefetch two data streams with different strides
for both level-1 and level-2 caches.

Cache bank conflicts
Each 64-bytes line in the data cache is divided into 4 banks of 16 bytes each. It is not
possible to do a memory read and a memory write in the same clock cycle if the two
memory addresses have the same bank number, i.e. if bit 4 and 5 in the two addresses are
the same. Example:

; Example 7.14. Core2 cache bank conflict
mov eax, [esi] ; Use bank 0, assuming esi is divisible by 40H
mov [esi+100H], ebx ; Use bank 0. Cache bank conflict
mov [esi+110H], ebx ; Use bank 1. No cache bank conflict

Misaligned memory accesses
Misaligned memory reads have a penalty of approximately 12 clock cycles when a cache
line boundary (64 bytes) is crossed.

Misaligned memory writes have a penalty of approximately 10 clock cycles when a cache
line boundary (64 bytes) is crossed.

There is also a penalty for misaligned memory accesses that do not cross a cache line
boundary in the case of a memory read after a write to the same address. The penalty for
misaligned store-to-load forwarding not crossing a cache line boundary is 7 clock cycles.
(See "Intel 64 and IA-32 Architectures Optimization Reference Manual" for more details on
store Forwarding.)

7.14 Breaking dependence chains
A common way of setting a register to zero is XOR EAX,EAX or SUB EBX,EBX. The
Core2 processor recognizes that certain instructions are independent of the prior value of
the register if the source and destination registers are the same.

This applies to all of the following instructions: XOR, SUB, PXOR, XORPS, XORPD, and all
variants of PSUBxxx and PCMPxxx.

The following instructions are not recognized as being independent when source and
destination are the same: SBB, CMP, PANDN, ANDNPS, ANDNPD.

Floating point subtract and compare instructions are not truly independent when source and
destination are the same because of the possibility of NAN's etc.

These instructions are useful for breaking an unnecessary dependence, but only on
processors that recognize this independence.

7.15 Bottlenecks in Core2

Instruction fetch and predecoding
All parts of the pipeline in the Core2 design have been improved over the PM design so that
the total throughput is increased significantly. The part that has been improved the least is
instruction fetch and predecoding. This part cannot always keep up with the speed of the
execution units. Instruction fetch and predecoding is therefore the most likely bottleneck in
CPU-intensive code.

 86

It is important to avoid long instructions in order to optimize instruction fetch and
predecoding. The optimal average instruction length is approximately 3 bytes, which can be
impossible to obtain.

Instruction fetch and predecoding is not a bottleneck in a loop that fits into no more than four
aligned 16-byte blocks of code. The performance of a program can therefore be improved if
the innermost loop has no more than 64 bytes of code or can be split into multiple loops that
have no more than 64 bytes each.

Instruction decoding
The decoders can handle four instructions per clock cycle, or five in the case of macro-op
fusion. Only the first one of the four decoders can handle instructions that generate more
than one µop. The minimum output of the decoders is therefore 2 µops per clock cycle in
the case that all instructions generate 2 µops each so that only the first decoder can be
used. Instructions should preferably be ordered according to the 4-1-1-1 pattern for optimal
decoder throughput.

Length-changing prefixes cause long delays in the decoders. These prefixes should be
avoided at all costs. Avoid instructions with 16-bit immediate operands in 32-bit and 64-bit
mode.

Fortunately, most of the instructions that generated multiple µops in previous designs
generate only a single µop on the Core2 thanks to improved µop fusion, the stack engine,
and the 128-bit width of buses and execution units. The decoders will generate four µops
per clock cycle in an instruction stream where all of the instructions generate only a single
µop each. This matches the throughput of the rest of the pipeline. Decoder throughput is
therefore only critical if some of the instructions generate more than one µop each.

Macro-op fusion does not work in 64-bit mode.

Register read stalls
The number of register read ports on the permanent register file is insufficient in many
situations. Register read stalls is therefore a very likely bottleneck.

Avoid having more than two registers that are often read but seldom written to in the code.
The stack pointer, frame pointer, 'this' pointer, and loop-invariant expressions that are
stored in a register are likely contributors to register read stalls. Loop counters and other
registers that are modified inside a loop may also contribute to register read stalls if the loop
uses more than 6 clock cycles per iteration.

Execution ports and execution units
The capacity of the execution ports and execution units is impressive. Many µops have two
or three execution ports to choose between and each unit can handle one full 128-bit vector
operation per clock cycle. The throughput of the execution ports is therefore less likely to be
a bottleneck than on previous designs.

Execution ports can be a bottleneck if the code generates many µops that all go to the same
execution port. Memory operations can be a bottleneck in code that contains many memory
accesses because there is only one memory read port and one memory write port.

Most execution units are pipelined to a throughput of one µop per clock cycle. The most
important exceptions are division, square root, and long double precision (80 bits)
multiplication. For example, the multiplication unit throughput may be a bottleneck in code
that has many multiplications in the floating point stack registers.

 87

Execution latency and dependence chains
Execution latencies on the Core2 are generally low. Most integer ALU operations have a
latency of only one clock cycle, even for 128-bit vector operations. There is an additional
latency of one clock cycle for moving data between the integer unit and the floating point
unit. The execution latencies are critical only in long dependence chains. Long dependence
chains should be avoided.

Partial register access
There is a penalty for reading a full register after writing to a part of the register. Use MOVZX
or MOVSX to read 8-bit or 16-bit memory operands into a 32-bit register rather than using a
smaller part of the register.

Retirement
The retirement of µops has not been observed to be a bottleneck in any of my experiments.

Branch prediction
The branch prediction algorithm is good, especially for loops. Indirect jumps can be
predicted. Unfortunately, the branch history pattern table is so small that branch
mispredictions are quite common.

A special branch target buffer for branches with loop behavior has only 128 entries which
may be a bottleneck for a program with many critical loops.

Memory access
The cache bandwidth, memory bandwidth and data prefetching are significantly better than
on previous processors.

Memory bandwidth is still a likely bottleneck, of course, for memory-intensive applications.

Literature
Ofri Wechsler: "Inside Intel Core Microarchitecture: Setting New Standards for Energy-
Efficient Performance". White Paper. Intel 2006. "Intel 64 and IA-32 Architectures
Optimization Reference Manual". Intel 2006.

 88

8 Pentium 4 (NetBurst) pipeline
The Intel P4 and P4E processors are based on the so-called NetBurst microarchitecture,
which is very different from the design of other Intel processors. This architecture has turned
out to be less efficient than expected and is no longer used in new designs.

The primary design goal of the NetBurst microarchitecture was to obtain the highest
possible clock frequency. This can only be achieved by making the pipeline longer. The 6'th
generation microprocessors PPro, P2 and P3 have a pipeline of ten stages. The PM, which
is an improvement of the same design, has approximately 13 stages. The 7'th generation
microprocessor P4 has a 20 stage pipeline, and the P4E has even a few stages more.
Some of the stages are just for moving data from one part of the chip to another.

An important difference from previous processors is that the code cache is replaced by a
trace cache which contains decoded µops rather than instructions. The advantage of the
trace cache is that the decoding bottleneck is removed and the design can use RISC
technology. The disadvantage is that the information in the trace cache is less compact and
takes more chip space.

The out-of-order core is similar to the PPro design, but bigger. The reorder buffer can
contain 126 µops in process. There is no limitation on register reads and renamings, but the
maximum throughput is still limited to 3 µops per clock cycle, and the limitations in the
retirement station are the same as in the PPro.

8.1 Data cache
The on-chip level-2 cache is used for both code and data. The size of the level-2 cache
ranges from 256 kb to 2 MB for different models. The level-2 cache is organized as 8 ways,
64 bytes per line. It runs at full speed with a 256 bits wide data bus to the central processor,
and is quite efficient.

The level-1 data cache is 8 or 16 kb, 8 ways, 64 bytes per line. The relatively small size of
the level-1 data cache is compensated for by the fast access to the level-2 cache. The level-
1 data cache uses a write-through mechanism rather than write-back. This reduces the
write bandwidth.

The level-1 code cache is a trace cache, as explained below.

8.2 Trace cache
Instructions are stored in the trace cache after being decoded into µops. Rather than storing
instruction opcodes in a level-1 cache, it stores decoded µops. One important reason for
this is that the decoding stage was a bottleneck on earlier processors. An opcode can have
any length from 1 to 15 bytes. It is quite complicated to determine the length of an
instruction opcode; and we have to know the length of the first opcode in order to know
where the second opcode begins. Therefore, it is difficult to determine opcode lengths in
parallel. The 6'th generation microprocessors could decode three instructions per clock
cycle. This may be more difficult at higher clock speeds. If µops all have the same size, then
the processor can handle them in parallel, and the bottleneck disappears. This is the
principle of RISC processors. Caching µops rather than opcodes enables the P4 and P4E to
use RISC technology on a CISC instruction set. A trace in the trace cache is a string of µops
that are executed in sequence, even if they are not sequential in the original code. The
advantage of this is that the number of clock cycles spent on jumping around in the cache is
minimized. This is a second reason for using a trace cache.

The µops take more space than opcodes on average. The following table shows the size of
each trace cache entry:

 89

Processor instruction
encoding,

bits

immediate
data or

address,
bits

address
tag, bits

total bits
per entry

number of
lines

entries
per line

total
entries

P4 21 16 16 53 2048 6 12k
P4E 16 32 16 64 2048 6 12k

Table 8.1. Number of bits per trace cache entry and number of entries in trace cache.
(These numbers are approximate and speculative. See www.chip-architect.com 2003-04-20)

The trace cache is organized as 2048 lines of 6 entries each, 8-way set-associative. The
trace cache runs at half clock speed, delivering up to 6 µops every two clock cycles.

Economizing trace cache use on P4
On the P4, 16 of the bits in each entry are reserved for data. This means that a µop that
requires more than 16 bits of data storage must use two entries. You can calculate whether
a µop uses one or two trace cache entries by the following rules, which have been obtained
experimentally.

1. A µop with no immediate data and no memory operand uses only one trace cache
entry.

2. A µop with an 8-bit or 16-bit immediate operand uses one trace cache entry.

3. A µop with a 32-bit immediate operand in the interval from -32768 to +32767 uses
one trace cache entry. The immediate operand is stored as a 16-bit signed integer. If
an opcode contains a 32-bit constant, then the decoder will investigate if this
constant is within the interval that allows it to be represented as a 16-bit signed
integer. If this is the case, then the µop can be contained in a single trace cache
entry.

4. If a µop has an immediate 32-bit operand outside the ±215 interval so that it cannot
be represented as a 16-bit signed integer, then it will use two trace cache entries
unless it can borrow storage space from a nearby µop.

5. A µop in need of extra storage space can borrow 16 bits of extra storage space from
a nearby µop that doesn't need its own data space. Almost any µop that has no
immediate operand and no memory operand will have an empty 16-bit data space
for other µops to borrow. A µop that requires extra storage space can borrow space
from the next µop as well as from any of the preceding 3 - 5 µops (5 if it is not
number 2 or 3 in a trace cache line), even if they are not in the same trace cache
line. A µop cannot borrow space from a preceding µop if any µop between the two is
double size or has borrowed space. Space is preferentially borrowed from preceding
rather than subsequent µops.

6. The displacement of a near jump, call or conditional jump is stored as a 16-bit signed
integer, if possible. An extra trace cache entry is used if the displacement is outside
the ±215 range and no extra storage space can be borrowed according to rule 5
(Displacements outside this range are rare).

7. A memory load or store µop will store the address or displacement as a 16-bit
integer, if possible. This integer is signed if there is a base or index register,
otherwise unsigned. Extra storage space is needed if a direct address is ≥ 216 or an
indirect address (i.e. with one or two pointer registers) has a displacement outside
the ±215 interval.

8. Memory load µops can not borrow extra storage space from other µops. If 16 bits of
storage is insufficient then an extra trace cache entry will be used, regardless of

 90

borrowing opportunities.

9. Most memory store instructions generate two µops: The first µop, which goes to port
3, calculates the memory address. The second µop, which goes to port 0, transfers
the data from the source operand to the memory location calculated by the first µop.
The first µop can always borrow storage space from the second µop. This space
cannot be borrowed to any other µop, even if it is empty.

10. Store operations with an 8, 16, or 32-bit register as source, and no SIB byte, can be
contained in a single µop. These µops can borrow storage space from other µops,
according to rule 5 above.

11. Segment prefixes do not require extra storage space.

12. A µop cannot have both a memory operand and an immediate operand. An
instruction that contains both will be split into two or more µops. No µop can use
more than two trace cache entries.

13. A µop that requires two trace cache entries cannot cross a trace cache line
boundary. If a double-space µop would cross a 6-entry boundary in the trace cache
then an empty space will be inserted and the µop will use the first two entries of the
next trace cache line.

The difference between load and store operations needs an explanation. My theory is as
follows: No µop can have more than two input dependences (not including segment
registers). Any instruction that has more than two input dependences needs to be split up
into two or more µops. Examples are ADC and CMOVcc. A store instruction like MOV
[ESI+EDI],EAX also has three input dependences. It is therefore split up into two µops.
The first µop calculates the address [ESI+EDI], the second µop stores the value of EAX to
the calculated address. In order to optimize the most common store instructions, a single-
µop version has been implemented to handle the situations where there is no more than
one pointer register. The decoder makes the distinction by seeing if there is a SIB byte in
the address field of the instruction. A SIB byte is needed if there is more than one pointer
register, or a scaled index register, or ESP as base pointer. Load instructions, on the other
hand, can never have more than two input dependences. Therefore, load instructions are
implemented as single-µop instructions in the most common cases. The load µops need to
contain more information than the store µops. In addition to the type and number of the
destination register, it needs to store any segment prefix, base pointer, index pointer, scale
factor, and displacement. The size of the trace cache entries has probably been chosen to
be exactly enough to contain this information. Allocating a few more bits for the load µop to
indicate where it is borrowing storage space from would mean that all trace cache entries
would have a bigger size. Given the physical constraints on the trace cache, this would
mean fewer entries. This is probably the reason why memory load µops cannot borrow
storage space. The store instructions do not have this problem because the necessary
information is already split up between two µops unless there is no SIB byte, and hence less
information to contain.

The following examples will illustrate the rules for trace cache use (P4 only):

; Example 8.1. P4 trace cache use
add eax,10000 ; The constant 10000 uses 32 bits in the opcode, but
 ; can be contained in 16 bits in uop. uses 1 space.
add ebx,40000 ; The constant is bigger than 215, but it can borrow
 ; storage space from the next uop.
add ebx,ecx ; Uses 1 space. gives storage space to preceding uop.
mov eax,[mem1] ; Requires 2 spaces, assuming that address ≥ 216;
 ; preceding borrowing space is already used.
mov eax,[esi+4] ; Requires 1 space.
mov [si],ax ; Requires 1 space.

 91

mov ax,[si] ; Requires 2 uops taking one space each.
movzx eax,word ptr[si] ; Requires 1 space.
movdqa xmm1,es:[esi+100h] ; Requires 1 space.
fld qword ptr es:[ebp+8*edx+16] ; Requires 1 space.
mov [ebp+4], ebx ; Requires 1 space.
mov [esp+4], ebx ; Requires 2 uops because sib byte needed.
fstp dword ptr [mem2] ; Requires 2 uops. the first uop borrows
 ; space from the second one.

No further data compression is used in the trace cache besides the methods mentioned
above. A program that has a lot of direct memory addresses will typically use two trace
cache entries for each data access, even if all memory addresses are within the same
narrow range. In a flat memory model, the address of a direct memory operand uses 32 bits
in the opcode. The assembler listing will typically show addresses lower than 216, but these
addresses are relocated twice before the microprocessor sees them. The first relocation is
done by the linker; the second relocation is done by the loader when the program is loaded
into memory. When a flat memory model is used, the loader will typically place the entire
program at a virtual address space beginning at a value > 216. You may save space in the
trace cache by accessing data through pointers. In high-level languages like C++, local data
are always saved on the stack and accessed through pointers. Direct addressing of global
and static data can be avoided by using classes and member functions. Similar methods
may be applied in assembly programs.

You can prevent double-size µops from crossing 6-entry boundaries by scheduling them so
that there is an even number (including 0) of single-size µops between any two double-size
µops (A long, continuous 2-1-2-1 pattern will also do). Example:

; Example 8.2a. P4 trace cache double entries
mov eax, [mem1] ; 1 uop, 2 TC entries
add eax, 1 ; 1 uop, 1 TC entry
mov ebx, [mem2] ; 1 uop, 2 TC entries
mov [mem3], eax ; 1 uop, 2 TC entries
add ebx, 1 ; 1 uop, 1 TC entry

If we assume, for example, that the first µop here starts at 6-entry boundary, then the MOV
[MEM3],EAX µop will cross the next 6-entry boundary at the cost of an empty entry. This
can be prevented by re-arranging the code:

; Example 8.2b. P4 trace cache double entries rearranged
mov eax, [mem1] ; 1 uop, 2 TC entries
mov ebx, [mem2] ; 1 uop, 2 TC entries
add eax, 1 ; 1 uop, 1 TC entry
add ebx, 1 ; 1 uop, 1 TC entry
mov [mem3], eax ; 1 uop, 2 TC entries

We cannot know whether the first two µops are crossing any 6-entry boundary as long as
we haven't looked at the preceding code, but we can be certain that the MOV [MEM3],EAX
µop will not cross a boundary, because the second entry of the first µop cannot be the first
entry in a trace cache line. If a long code sequence is arranged so that there is never an
odd number of single-size µops between any two double-size µops then we will not waste
any trace cache entries. The preceding two examples assume that direct memory operands
are bigger than 216, which is usually the case. For the sake of simplicity, I have used only
instructions that generate 1 µop each in these examples. For instructions that generate
more than one µop, you have to consider each µop separately.

Trace cache use on P4E
The trace cache entries on the P4E need to be bigger than on the P4 because the
processor can run in 64 bit mode. This simplifies the design considerably. The need for
borrowing storage space from neighboring entries has been completely eliminated. Each

 92

entry has 32 bits for immediate data, which is sufficient for all µops in 32 bit mode. Only a
few instructions in 64 bit mode can have 64 bits of immediate data or address, and these
instructions are split into two or three µops which contain no more than 32 data bits each.
Consequently, each µop uses one, and only one, trace cache entry.

Trace cache delivery rate
The trace cache runs at half clock speed, delivering one trace cache line with six entries
every two clock cycles. This corresponds to a maximum throughput of three µops per clock
cycle.

The typical delivery rate may be slightly lower on P4 because some µops use two entries
and some entries may be lost when a two-entry µop crosses a trace cache line boundary.

The throughput on P4E has been measured to exactly 8/3 or 2.667 µops per clock cycle. I
have found no explanation why a throughput of 3 µops per clock cannot be obtained on
P4E. It may be due to a bottleneck elsewhere in the pipeline.

Branches in the trace cache
The µops in the trace cache are not stored in the same order as the original code. If a
branching µop jumps most of the time, then the traces will usually be organized so that the
jumping µop is followed by the µops jumped to, rather than the µops that follows it in the
original code. This reduces the number of jumps between traces. The same sequence of
µops can appear more than once in the trace cache if it is jumped to from different places.

Sometimes it is possible to control which of the two branches are stored after a branching
µop by using branch hint prefixes (see page 28), but my experiments have shown no
consistent advantage of doing so. Even in the cases where there is an advantage by using
branch hint prefixes, this effect does not last very long because the traces are rearranged
quite often to fit the behavior of the branch µops. You can therefore assume that traces are
usually organized according to the way branches go most often.

The µop delivery rate is usually less than the maximum if the code contains many jumps,
calls and branches. If a branch is not the last entry in a trace cache line and the branch
goes to another trace stored elsewhere in the trace cache, then the rest of the entries in the
trace cache line are loaded for no use. This reduces the throughput. There is no loss if the
branching µop is the last µop in a trace cache line. In theory, it might be possible to organize
code so that branch µops appear in the end of trace cache lines in order to avoid losses.
But attempts to do so are rarely successful because it is almost impossible to predict where
each trace begins. Sometimes, a small loop containing branches can be improved by
organizing it so that each branch contains a number of trace cache entries divisible by the
line size (six). A number of trace cache entries that is slightly less than a multiple of the line
size is better than a number slightly more than a multiple of the line size.

Obviously, these considerations are only relevant if the throughput is not limited by any
other bottleneck in the execution units, and the branches are predictable.

Guidelines for improving trace cache performance
The following guidelines can improve performance on the P4 if the delivery of µops from the
trace cache is a bottleneck:

1. Prefer instructions that generate few µops.

2. Replace branch instructions by conditional moves if this does not imply extra
dependences.

3. Keep immediate operands in the range between -215 and +215 if possible. If a µop
has an immediate 32-bit operand outside this range, then you should preferably

 93

have a µop with no immediate operand and no memory operand before or
immediately after the µop with the big operand.

4. Avoid direct memory addresses. The performance can be improved by using
pointers if the same pointer can be used repeatedly and the addresses are within
±215 of the pointer register.

5. Avoid having an odd number of single-size µops between any two double-size µops.
Instructions that generate double-size µops include memory loads with direct
memory operands, and other µops with an unmet need for extra storage space.

Only the first two of these guidelines are relevant to the P4E.

8.3 Instruction decoding
Instructions that are not in the trace cache will go directly from the instruction decoder to the
execution pipeline. In this case, the maximum throughput is determined by the instruction
decoder.

In most cases, the decoder generates 1 - 4 µops for each instruction. For complex
instructions that require more than 4 µops, the µops are submitted from microcode ROM.
The tables in manual 4: "Instruction tables" list the number of decoder µops and microcode
µops that each instruction generates.

The decoder can handle instructions at a maximum rate of one instruction per clock cycle.
There are a few cases where the decoding of an instruction takes more than one clock
cycle:

An instruction that generates micro-code may take more than one clock cycle to decode,
sometimes much more. The following instructions, which may in some cases generate
micro-code, do not take significantly more time to decode: moves to and from segment
registers, ADC, SBB, IMUL, MUL, MOVDQU, MOVUPS, MOVUPD.

Instructions with many prefixes take extra time to decode. The instruction decoder on P4
can handle one prefix per clock cycle. An instruction with more than one prefix will thus take
one clock cycle for each prefix to decode on the P4. Instructions with more than one prefix
are rare in a 32-bit flat memory model where segment prefixes are not needed.

The instruction decoder on P4E can handle two prefixes per clock cycle. Thus, an
instruction with up to two prefixes can be decoded in a single clock cycle, while an
instruction with three or four prefixes is decoded in two clock cycles. This capability was
introduced in the P4E because instructions with two prefixes are common in 64 bit mode
(e.g. operand size prefix and REX prefix). Instructions with more than two prefixes are very
rare because segment prefixes are rarely used in 64 bit mode.

Decoding time is not important for small loops that fit entirely into the trace cache. If the
critical part of the code is too big for the trace cache, or scattered around in many small
pieces, then the µops may go directly from the decoder to the execution pipeline, and the
decoding speed may be a bottleneck. The level-2 cache is so efficient that you can safely
assume that it delivers code to the decoder at a sufficient speed.

If it takes longer time to execute a piece of code than to decode it, then the trace may not
stay in the trace cache. This has no negative influence on the performance, because the
code can run directly from the decoder again next time it is executed, without delay. This
mechanism tends to reserve the trace cache for the pieces of code that execute faster than
they decode. I have not found out which algorithm the microprocessor uses to decide

 94

whether a piece of code should stay in the trace cache or not, but the algorithm seems to be
rather conservative, rejecting code from the trace cache only in extreme cases.

8.4 Execution units
Μops from the trace cache or from the decoder are queued when they are waiting to be
executed. After register renaming and reordering, each µop goes through a port to an
execution unit. Each execution unit has one or more subunits which are specialized for
particular operations, such as addition or multiplication. The organization of ports, execution
units, and subunits is outlined in the following two tables for the P4 and P4E, respectively.

port execution
unit

subunit speed latency reciprocal
throughput

add, sub, mov double 0.5 0.5
logic double 0.5 0.5

store integer single 1 1

0 alu0

branch single 1 1
move and store
fp, mmx, xmm

single 6 1 0 mov

fxch single 0 1
1 alu1 add, sub, mov double 0.5 0.5

misc. single
borrows mmx shift single 4 1

borrows fp mul single 14 > 4

1 int

borrows fp div single 53 - 61 23
fp add single 4 - 5 1 - 2
fp mul single 6 - 7 2
fp div single 23 - 69 23 - 69

1 fp

fp misc. single
mmx alu single 2 1 - 2
mmx shift single 2 1 - 2

1 mmx

mmx misc. single
2 load all loads single 1
3 store store address single 2

Table 8.2. Execution units in P4

port execution
unit

subunit speed latency reciprocal
throughput

add, sub, mov double 1 0.5
logic double 1 0.5

store integer single 1 1

0 alu0

branch single 1 1
move and store fp,

mmx, xmm
single 7 1 0 mov

fxch single 0 1
add, sub, mov double 1 0.5

shift double 1 0.5
1 alu1

multiply double 10 2.5
misc single 1 int

borrows fp div single 63 - 96 34
fp add single 5 - 6 1 - 2
fp mul single 7 - 8 2
fp div single 32 - 71 32 - 71

1 fp

fp misc. single

 95

mmx alu single 2 1 - 2
mmx shift single 2 1 - 2

1 mmx

mmx misc. single
2 load all loads single 1
3 store store address single 2

Table 8.3. Execution units in P4E

Further explanation can be found in "Intel Pentium 4 and Intel Xeon Processor Optimization
Reference Manual". The table above deviates slightly from diagrams in the Intel manual in
order to account for various delays.

A µop can be executed when the following conditions are met:

• All operands for the µop are ready.
• An appropriate execution port is ready.
• An appropriate execution unit is ready.
• An appropriate execution subunit is ready.

Two of the execution units run at double clock speed. This is alu0 and alu1, which are used
for integer operations. These units are highly optimized in order to execute the most
common µops as fast as possible. The double clock speed enables these two units to
receive a new µop every half clock cycle. An instruction like ADD EAX,EBX can execute in
either of these two units. This means that the execution core can handle four integer
additions per clock cycle. alu0 and alu1 are both pipelined in three stages. The lower half of
the result (16 bits on P4, 32 bits on P4E) is calculated in the first half clock cycle, the upper
half is calculated in the second half clock cycle, and the flags are calculated in the third half-
clock cycle. On the P4, the lower 16 bits are available to a subsequent µop already after a
half clock cycle, so that the effective latency will appear to be only a half clock cycle. The
double-speed execution units are designed to handle only the most common instructions in
order to make them as small as possible. This is necessary for making the high speed
possible.

This so-called "staggered addition" in three pipeline stages in alu0 and alu1 is revealed in
"The Microarchitecture of the Pentium 4 Processor", Intel Technology journal 2001. I haven't
been able to confirm this experimentally, since there is no difference in latencies between 8-
bit, 16-bit, 32-bit and 64-bit additions.

It is unknown whether the floating point and MMX units also use staggered addition, and at
what speed. See page 96 for a discussion.

The trace cache can submit approximately three µops per clock cycle to the queue. This
sets a limit to the execution speed if all µops are of the type that can execute in alu0 and
alu1. The throughput of four µops per clock cycle can thus only be obtained if µops have
been queued during a preceding period of lower throughput (due to slow instructions or
cache misses). My measurements show that a throughput of four µops per clock cycle can
be obtained for a maximum of 11 consecutive clock cycles if the queue has been filled
during a preceding period of lower throughput.

Each port can receive one µop for every whole clock tick. Port 0 and port 1 can each
receive one additional µop at every half-clock tick, if the additional µop is destined for alu0
or alu1. This means that if a code sequence consists of only µops that go to alu0 then the
throughput is two µops per clock cycle. If the µops can go to either alu0 or alu1 then the
throughput at this stage can be four µops per clock cycle. If all µops go to the single-speed
execution units under port 1 then the throughput is limited to one µop per clock cycle. If all
ports and units are used evenly, then the throughput at this stage may be as high as six
µops per clock cycle.

 96

The single-speed execution units can each receive one µop per clock cycle. Some subunits
have a lower throughput. For example, the FP-DIV subunit cannot start a new division
before the preceding division is finished. Other subunits are perfectly pipelined. For
example, a floating point addition may take 6 clock cycles, but the FP-ADD subunit can start
a new FADD operation every clock cycle. In other words, if the first FADD operation goes
from time T to T+6, then the second FADD can start at time T+1 and end at time T+7, and
the third FADD goes from time T+2 to T+8, etc. Obviously, this is only possible if each FADD
operation is independent of the results of the preceding ones.

Details about µops, execution units, subunits, throughput and latencies are listed in manual
4: "Instruction tables". The following examples will illustrate how to use this table for making
time calculations. Timings are for P4E.

; Example 8.3. P4E instruction latencies
fadd st, st(1) ; 0 - 6
fadd qword ptr [esi] ; 6 - 12

The first FADD instruction has a latency of 6 clock cycles. If it starts at time T=0, it will be
finished at time T=6. The second FADD depends on the result of the first one. Hence, the
time is determined by the latency, not the throughput of the FP-ADD unit. The second
addition will start at time T=6 and be finished at time T=12. The second FADD instruction
generates an additional µop that loads the memory operand. Memory loads go to port 0,
while floating point arithmetic operations go to port 1. The memory load µop can start at
time T=0 simultaneously with the first FADD or perhaps even earlier. If the operand is in the
level-1 or level-2 data cache then we can expect it to be ready before it is needed.

The second example shows how to calculate throughput:

; Example 8.4. P4E instruction throughput
 ; Clock cycle
pmullw xmm1, xmm0 ; 0 - 7
paddw xmm2, xmm0 ; 1 - 3
paddw mm1, mm0 ; 3 - 5
paddw xmm3, [esi] ; 4 - 6

The 128-bit packed multiplication has a latency of 7 and a reciprocal throughput of 2. The
subsequent addition uses a different execution unit. It can therefore start as soon as port 1
is vacant. The 128-bit packed additions have a reciprocal throughput of 2, while the 64-bit
versions have a reciprocal throughput of 1. Reciprocal throughput is also called issue
latency. A reciprocal throughput of 2 means that the second PADD can start 2 clocks after
the first one. The second PADD operates on 64-bit registers, but uses the same execution
subunit. It has a throughput of 1, which means that the third PADD can start one clock later.
As in the previous example, the last instruction generates an additional memory load µop.
As the memory load µop goes to port 0, while the other µops go to port 1, the memory load
does not affect the throughput. None of the instructions in this example depend on the
results of the preceding ones. Consequently, only the throughput matters, not the latency.
We cannot know if the four instructions are executed in program order or they are
reordered. However, reordering will not affect the overall throughput of the code sequence.

8.5 Do the floating point and MMX units run at half speed?
Looking at the tables in manual 4: "Instruction tables", we notice that many of the latencies
for 64-bit and 128-bit integer and floating point instructions are even numbers, especially for
the P4. This has led to speculations that the MMX and FP execution units may be running at
half clock speed. I have put up four different hypotheses in order to investigate this
question:

 97

Hypothesis 1
128-bit instructions are split into two 64-bit µops as in the P3. However, this hypothesis is
not in accordance with the µop counts that can be measured with the performance monitor
counters on the P4.

Hypothesis 2
We may assume that the P4 has two 64-bit MMX units working together at half speed. Each
128-bit µop will use both units and take 2 clock cycles, as illustrated on fig 8.1. A 64-bit µop
can use either of the two units so that independent 64-bit µops can execute at a throughput
of one µop per clock cycle, assuming that the half-speed units can start at both odd and
even clocks. Dependent 64-bit µops will have a latency of 2 clocks, as shown in fig 8.1.

Figure 8.1

The measured latencies and throughputs are in accordance with this hypothesis. In order to
test this hypothesis, I have made an experiment with a series of alternating 128-bit and 64-
bit µops. Under hypothesis 2, it will be impossible for a 64-bit µop to overlap with a 128-bit
µop, because the 128-bit µop uses both 64-bit units. A long sequence of n 128-bit µops
alternating with n 64-bit µops should take 4·n clocks, as shown in figure 8.2.

Figure 8.2

However, my experiment shows that this sequence takes only 3·n clocks. (I have made the
64-bit µops interdependent, so that they cannot overlap with each other). We therefore have
to reject hypothesis 2.

Hypothesis 3
We may modify hypothesis 2 with the assumption that the internal data bus is only 64 bits
wide, so that a 128-bit operand is transferred to the execution units in two clock cycles. If we
still assume that there are two 64-bit execution units running at half speed, then the first 64-
bit unit can start at time T = 0 when the first half of the 128-bit operand arrives, while the
second 64-bit unit will start one clock later, when the second half of the operand arrives (see
figure 8.3). The first 64-bit unit will then be able to accept a new 64-bit operand at time T=2,
before the second 64-bit unit is finished with the second half of the 128-bit operand. If we
have a sequence of alternating 128-bit and 64-bit µops, then the third µop, which is 128-bit,
can start with its first half operand at time T=3, using the second 64-bit execution unit, while
the second operand starts at T=4 using the first 64-bit execution unit. As figure 8.3 shows,
this can explain the observation that a sequence of n 128-bit µops alternating with n 64-bit
µops takes 3·n clocks.

 98

Figure 8.3

The measured latency of simple 128-bit µops is not 3 clocks, but 2. In order to explain this,
we have to look at how a dependence chain of 128-bit µops is executed. Figure 8.4 shows
the execution of a chain of interdependent 128-bit µops.

Figure 8.4

The first µop handles the first half of its operand from time T = 0 to 2, while the second half
of the operand is handled from time T = 1 to time 3. The second µop can start to handle its
first half operand already at time T = 2, even though the second half operand is not ready
until time T = 3. A sequence of n interdependent 128-bit µops of this kind will thus take
2·n+1 clocks. The extra 1 clock in the end will appear to be part of the latency of the final
instruction in the chain, which stores the result to memory. Thus, for practical purposes, we
can calculate with a latency of 2 clocks for simple 128-bit µops.

Hypothesis 4
The assumption is now that there is only one 64-bit arithmetic unit running at full speed. It
has a latency of 2 clocks and is pipelined in two stages, so that it can accept a new 64-bit
operand every clock cycle. Under this assumption, the sequence of alternating 128-bit and
64-bit µops will still be executed as shown in figure 8.3.

There is no experimental way to distinguish between hypothesis 3 and 4 if the two units
assumed under hypothesis 3 are identical, because all inputs and outputs to the execution
units occur at the same times under both of these hypotheses. It would be possible to prove
hypothesis 3 and reject hypothesis 4 if there were some 64-bit operations that could
execute only in one of the two assumed 64-bit units. It is likely that some of the rarest
operations would be supported only in one of the two units. And it would be possible to
prove this by making an experiment where only the unit that does not support a particular
operation is vacant when this operation is scheduled for execution. I have made a
systematic search for operations that might be supported only by one of the two
hypothetical units. The only candidate I have found is the 64-bit addition PADDQ. My
experiments show that the 64-bit PADDQ MM executes in the MMX-ALU unit, while the 128-
bit PADDQ XMM executes in the FP-ADD unit. However, further experiments show that if
there are two 64-bit MMX-ADD units then they are both able to perform the PADDQ MM. This
makes hypothesis 4 more likely than hypothesis 3.

 99

If hypothesis 4 is right, then we have a problem explaining why it needs two pipeline stages.
If the MMX-ALU unit is able to do a staggered 64-bit addition in 2 clock cycles, then it would
be possible to do a packed 32-bit addition in 1 clock cycle. It is difficult to believe that the
designers have given all MMX instructions a latency of 2 rather than 1 just for the sake of
the rare PADDQ MM instruction. A more likely explanation is that each adder is fixed at a
particular pipeline stage. I therefore consider hypothesis 4 the most likely explanation.

However, the following sentence may be read as support for hypothesis 3: "Intel NetBurst
micro-architecture [...] uses a deeply pipelined design to enable high clock rates with
different parts of the chip running at different clock rates, some faster and some slower than
the nominally-quoted clock frequency of the processor" (Intel Pentium 4 and Intel Xeon
Processor Optimization Reference Manual, 2001). Letting different units run at different
speeds may actually be a better design decision than letting the slowest unit determine the
overall clock frequency. A further reason for this choice may be to reduce power
consumption and optimize the thermal design. It is possible that some parts of e. g. the
floating point unit run at half speed, but the above citation may just as well refer to the trace
cache running at half speed.

Those 128-bit MMX µops where the two 64-bit halves are interdependent of each other all
have a latency of 4 clocks. This is in accordance with hypothesis 3 and 4.

Floating point addition and multiplication µops operating on 80-bit registers have latencies
that are one clock cycle more than the latencies of similar µops in 128-bit registers. Under
hypothesis 3, the extra clock cycle can be explained as the extra time it takes to transfer an
80-bit operand over a 64-bit data bus. Under hypothesis 4, the extra clock cycle can be
explained as the time needed to generate the extra 80-bit precision.

Scalar floating point operations in 80-bit registers have a throughput of 1 µop per clock
cycle, while scalar floating point operations in 128-bit registers have half throughput, even
though they only use 32 or 64 of the 128 bits. This is probably because the remaining 96 or
64 bits of the destination operand, which remain unchanged, are going through the
execution unit to the new (renamed) destination register.

Divisions behave differently. There is a separate division unit which uses iteration and is not
pipelined. Divisions can have both odd and even latencies, so it is likely that the division unit
runs at full speed. Division uses the FP-MUL unit, which implies that the FP-MUL unit
probably also runs at full speed.

8.6 Transfer of data between execution units
The latency of an operation is in most cases longer if the next dependent operation is not
executed in the same execution unit. Example (P4E):

; Example 8.5. P4E transfer data between execution units
 ; clock ex.unit subunit
paddw xmm0, xmm1 ; 0 - 2 MMX ALU
psllw xmm0, 4 ; 2 - 4 MMX SHIFT
pmullw xmm0, xmm2 ; 5 - 12 FP MUL
psubw xmm0, xmm3 ; 13 - 15 MMX ALU
por xmm6, xmm7 ; 3 - 5 MMX ALU
movdqa xmm1, xmm0 ; 16 - 23 MOV
pand xmm1, xmm4 ; 23 - 25 MMX ALU

The first instruction PADDW runs in the MMX unit under port 1, and has a latency of 2. The
shift instruction PSLLW runs in the same execution unit, though in a different subunit. There
is no extra delay, so it can start at time T=2. The multiplication instruction PMULLW runs in a
different execution unit, the FP unit, because there is no multiplication subunit in the MMX
execution unit. This gives an extra delay of one clock cycle. The multiplication cannot start

 100

until T=5, even though the shift operation finished at T=4. The next instruction, PSUBW, goes
back to the MMX unit, so again we have a delay of one clock cycle from the multiplication is
finished till the subtraction can begin. The POR does not depend on any of the preceding
instructions, so it can start as soon as port 1 and the MMX-ALU subunit are both vacant.
The MOVDQA instruction goes to the MOV unit under port 0, which gives us another delay of
one clock cycle after the PSUBW has finished. The last instruction, PAND, goes back to the
MMX unit under port 1. However, there is no additional delay after a move instruction. The
whole sequence takes 25 clock cycles.

There is no delay between the two double-speed units, ALU0 and ALU1, but on the P4
there is an additional delay of a half clock cycle from these units to any other (single-speed)
execution unit. Example (P4):

; Example 8.6a. P4 transfer data between execution units
 ; clock ex.unit subunit
and eax, 0fh ; 0.0 - 0.5 ALU0 LOGIC
xor ebx, 30h ; 0.5 - 1.0 ALU0 LOGIC
add eax, 1 ; 0.5 - 1.0 ALU1 ADD
shl eax, 3 ; 2.0 - 6.0 INT MMX SHIFT
sub eax, ecx ; 7.0 - 7.5 ALU0/1 ADD
mov edx, eax ; 7.5 - 8.0 ALU0/1 MOV
imul edx, 100 ; 9.0 - 23.0 INT FP MUL
or edx, ebx ; 23.0 - 23.5 ALU0/1 MOV

The first instruction, AND, starts at time T=0 in ALU0. Running at double speed, it is finished
at time 0.5. The XOR instruction starts as soon as ALU0 is vacant, at time 0.5. The third
instruction, ADD, needs the result of the first instruction, but not the second. Since ALU0 is
occupied by the XOR, the ADD has to go to ALU1. There is no delay from ALU0 to ALU1, so
the ADD can start at time T=0.5, simultaneously with the XOR, and finish at T=1.0. The SHL
instruction runs in the single-speed INT unit. There is a half clock delay from ALU0 or ALU1
to any other unit, so the INT unit cannot receive the result of the ADD until time T=1.5.
Running at single speed, the INT unit cannot start at a half-clock tick so it will wait until time
T=2.0 and finish at T=6.0. The next instruction, SUB, goes back to ALU0 or ALU1. There is a
one-clock delay from the SHL instruction to any other execution unit, so the SUB instruction
is delayed until time T=7.0. After the two double-speed instructions, SUB and MOV, we have
a half clock delay again before the IMUL running in the INT unit. The IMUL, running again at
single speed, cannot start at time T=8.5 so it is delayed until T=9.0. There is no additional
delay after IMUL, so the last instruction can start at T=23.0 and end at T=23.5.

There are several ways to improve this code. The first improvement is to swap the order of
ADD and SHL (then we have to add (1 SHL 3) = 8):

; Example 8.6b. P4 transfer data between execution units
 ; clock ex.unit subunit
and eax, 00fh ; 0.0 - 0.5 ALU0 LOGIC
xor ebx, 0f0h ; 0.5 - 1.0 ALU0 LOGIC
shl eax, 3 ; 1.0 - 5.0 INT MMX SHIFT
add eax, 8 ; 6.0 - 6.5 ALU1 ADD
sub eax, ecx ; 6.5 - 7.0 ALU0/1 ADD
mov edx, eax ; 7.0 - 7.5 ALU0/1 MOV
imul edx, 100 ; 8.0 - 22.0 INT FP MUL
or edx, ebx ; 22.0 - 22.5 ALU0/1 MOV

Here we are saving a half clock before the SHL and a half clock before the IMUL by making
the data for these instructions ready at a half-clock tick so that they are available to the
single-speed unit a half clock later, at an integral time. The trick is to reorder the instructions
so that we have an odd number of double-speed µops between any two single-speed µops
in a chain of interdependent instructions. We can improve the code further by minimizing the
number of transitions between execution units. Even better, of course, is to keep all

 101

operations in the same execution unit, and preferably the double-speed units. SHL EAX,3
can be replaced by 3 × (ADD EAX,EAX).

If we want to know why there is an additional delay when going from one execution unit to
another, there are three possible explanations:

Explanation A
The physical distance between the execution units on the silicon chip is quite large, and this
may cause a propagation delay in the traveling of electrical signals from one unit to another
because of the induction and capacity in the wires.

Explanation B
The "logical distance" between execution units means that the data have to travel through
various registers, buffers, ports, buses and multiplexers to get to the right destination. The
designers have implemented various shortcuts to bypass these delaying elements and
forward results directly to execution units that are waiting for these results. It is possible that
these shortcuts connect to only execution units under the same port.

Explanation C
If 128-bit operands are handled 64 bits at a time in staggered additions, as figure 8.4
suggests, then we will have a 1 clock delay at the end of a chain of 128-bit instructions
when the two halves have to be united. Consider, for example, the addition of packed
double precision floating point numbers in 128-bit registers on P4. If the addition of the
lower 64-bit operand starts at time T=0, it will finish at T=4. The upper 64-bit operand can
start at time T=1 and finish at T=5. If the next dependent operation is also a packed
addition, then the second addition can start to work on the lower 64-bit operand at time T=4,
before the upper operand is ready.

Figure 8.5

The latency for a chain of such instructions will appear to be 4 clock cycles per operation. If
all operations on 128-bit registers can overlap in this way, then we will never see the 128-bit
operations having higher latency than the corresponding 64-bit operations. But if the
transport of the data to another execution unit requires that all 128 bits travel together, then
we get an additional delay of 1 clock cycle for the synchronization of the upper and lower
operands, as figure 8.5 shows. In the same way, the double-speed units ALU0 and ALU1 on
P4 handle 32-bit operations as two 16-bit operations taking a half-clock cycle each. But if all
32 bits are needed together, then there is an extra delay of a half clock. It is not known
whether the data buses between execution units are 32 bits, 64 bits or 128 bits wide.

8.7 Retirement
The retirement of executed µops works in the same way in the P4 and P4E as in the 6'th
generation processors. This process is explained on page 49.

The retirement station can handle three µops per clock cycle. This may not seem like a
problem because the throughput is already limited to 3 µops per clock in the trace cache.

 102

But the retirement station has the further limitation that taken jumps must retire in the first of
the three slots in the retirement station. This sometimes limits the throughput of small loops.
If the number of µops in the loop is not a multiple of 3, then the jump-back instruction in the
bottom of the loop may go into the wrong retirement slot, at the penalty of one clock cycle
per iteration. It is therefore recommended that the number of µops (not instructions) in small
critical loops should be a multiple of 3. In some cases, you can actually save one clock
cycle per iteration by adding one or two NOP's to the loop to make the number of µops
divisible by 3. This applies only if a throughput of 3 µops per clock cycle is expected.

8.8 Partial registers and partial flags
Registers AL, AH, and AX are all parts of the EAX register. These are called partial registers.
On 6'th generation microprocessors, the partial registers could be split into separate
temporary registers, so that different parts could be handled independently of each other.
This caused a serious delay whenever there was a need to join different parts of a register
into a single full register. This problem is explained on page 50 and 67.

The P4/P4E prevents this problem in a different way than the PM, namely by always
keeping the whole register together. This solution has other drawbacks, however. The first
drawback is that it introduces false dependences. Any read or write to AL will be delayed if a
preceding write to AH is delayed.

Another drawback is that access to a partial register sometimes requires an extra µop.
Examples:

; Example 8.7. Partial register access
mov eax, [mem32] ; 1 uop
mov ax, [mem16] ; 2 uops
mov al, [mem8] ; 2 uops
mov ah, [mem8] ; 2 uops
add al, bl ; 1 uop
add ah, bh ; 1 uop
add al, bh ; 2 uops
add ah, bl ; 2 uops

For optimal performance, you may follow the following guidelines when working with 8-bit
and 16-bit operands:

• Avoid using the high 8-bit registers AH, BH, CH, DH.

• When reading from an 8-bit or 16-bit memory operand, use MOVZX to read the entire
32-bit register, even in 16-bit mode.

• When sign-extension is needed then use MOVSX with the largest possible
destination register, i.e. 32-bit destination in 16 or 32-bit mode, and 64-bit
destination in 64-bit mode.

• Alternatively, use MMX or XMM registers to handle 8-bit and 16-bit integers, if they
can be packed.

The problems with partial access also apply to the flags register when an instruction
modifies some of the flags but leaves other flags unchanged.

For historical reasons, the INC and DEC instructions leave the carry flag unchanged, while
the other arithmetic flags are written to. This causes a false dependence on the previous
value of the flags and costs an extra µop. To avoid these problems, it is recommended that
you always use ADD and SUB instead of INC and DEC. For example, INC EAX should be
replaced by ADD EAX,1.

 103

SAHF leaves the overflow flag unchanged but changes the other arithmetic flags. This
causes a false dependence on the previous value of the flags, but no extra µop.

BSF and BSR change the zero flag but leave the other flags unchanged. This causes a false
dependence on the previous value of the flags and costs an extra µop.

BT, BTC, BTR, and BTS change the carry flag but leave the other flags unchanged. This
causes a false dependence on the previous value of the flags and costs an extra µop. Use
TEST, AND, OR and XOR instead of these instructions. On P4E you can also use shift
instructions efficiently. For example, BT RAX,40 / JC X can be replaced by SHR
RAX,41 / JC X if the value of RAX is not needed again later.

8.9 Store forwarding stalls
The problems with accessing part of a memory operand are much bigger than when
accessing part of a register. These problems are the same as for previous processors, see
page 53. Example:

; Example 8.8a. Store forwarding stall
mov dword ptr [mem1], eax
mov dword ptr [mem1+4], 0
fild qword ptr [mem1] ; Large penalty

You can save 10-20 clocks by changing this to:

; Example 8.8b. Avoid store forwarding stall
movd xmm0, eax
movq qword ptr [mem1], xmm0
fild qword ptr [mem1] ; No penalty

8.10 Memory intermediates in dependence chains
The P4 has an unfortunate proclivity for trying to read a memory operand before it is ready.
If you write

; Example 8.9. Memory intermediate in dependence chain
imul eax, 5
mov [mem1], eax
mov ebx, [mem1]
add ebx, ecx

then the microprocessor may try to read the value of [MEM1] into EBX before the IMUL and
the memory write have finished. It soon discovers that the value it has read is invalid, so it
will discard EBX and try again. It will keep replaying the read instruction as well as the
subsequent instructions until the data in [MEM1] are ready. There seems to be no limit to
how many times it can replay a series of instructions, and this process steals resources from
other processes. In a long dependence chain, this may typically cost 10 - 20 clock cycles!
Using the MFENCE instruction to serialize memory access does not solve the problem
because this instruction is even more costly. On other microprocessors, including P4E, the
penalty for reading a memory operand immediately after writing to the same memory
position is only a few clock cycles.

The best way to avoid this problem is, of course, to replace MOV EBX,[MEM1] with MOV
EBX,EAX in the above example. Another possible solution is to give the processor plenty of
work to do between the store and the load from the same address.

 104

However, there are two situations where it is not possible to keep data in registers. The first
situation is the transfer of parameters in high-level language procedure calls in 16-bit and
32-bit mode; the second situation is transferring data between floating point registers and
other registers.

Transferring parameters to procedures
Calling a function with one integer parameter in C++ will typically look like this in 32-bit
mode:

; Example 8.10. Memory intermediate in function call (32-bit mode)
push eax ; Save parameter on stack
call _ff ; Call function _ff
add esp,4 ; Clean up stack after call
...
_ff proc near ; Function entry
push ebp ; Save ebp
mov ebp,esp ; Copy stack pointer
mov eax,[ebp+8] ; Read parameter from stack
...
pop ebp ; Restore ebp
ret ; Return from function
_ff endp

As long as either the calling program or the called function is written in high-level language,
you may have to stick to the convention of transferring parameters on the stack. Most C++
compilers can transfer 2 or 3 integer parameters in registers when the function is declared
__fastcall. However, this method is not standardized. Different compilers use different
registers for parameter transfer. To avoid the problem, you may have to keep the entire
dependence chain in assembly language. The problem can be avoided in 64-bit mode
where most parameters are transferred in registers.

Transferring data between floating point and other registers
There is no way to transfer data between floating point registers and other registers, except
through memory. Example:

; Example 8.11. Memory intermediate in integer to f.p. conversion
imul eax, ebx
mov [temp], eax ; Transfer data from integer register to f.p.
fild [temp]
fsqrt
fistp [temp] ; Transfer data from f.p. register to integer
mov eax, [temp]

Here we have the problem of transferring data through memory twice. You may avoid the
problem by keeping the entire dependence chain in floating point registers, or by using
XMM registers instead of floating point registers.

Another way to prevent premature reading of the memory operand is to make the read
address depend on the data. The first transfer can be done like this:

; Example 8.12. Avoid stall in integer to f.p. conversion
mov [temp], eax
and eax, 0 ; Make eax = 0, but keep dependence
fild [temp+eax] ; Make read address depend on eax

The AND EAX,0 instruction sets EAX to zero but keeps a false dependence on the previous
value. By putting EAX into the address of the FILD instruction, we prevent it from trying to
read before EAX is ready.

 105

It is a little more complicated to make a similar dependence when transferring data from
floating point registers to integer registers. The simplest way to solve the problem is:

; Example 8.13. Avoid stall in f.p. to integer conversion
fistp [temp]
fnstsw ax ; Transfer status after fistp to ax
and eax, 0 ; Set to 0
mov eax, [temp+eax] ; Make dependent on eax

Literature
A detailed study of the replay mechanism is published by Victor Kartunov, et. al.: "Replay:
Unknown Features of the NetBurst Core", www.xbitlabs.com/articles/cpu/print/replay.html.
See also US Patents 6,163,838; 6,094,717; 6,385,715.

8.11 Breaking dependence chains
A common way of setting a register to zero is XOR EAX,EAX or SUB EBX,EBX. The
P4/P4E processor recognizes that these instructions are independent of the prior value of
the register. So any instruction that uses the new value of the register will not have to wait
for the value prior to the XOR or SUB instruction to be ready. The same applies to the PXOR
instruction with a 64-bit or 128-bit register, but not to any of the following instructions: XOR or
SUB with an 8-bit or 16-bit register, SBB, PANDN, PSUB, XORPS, XORPD, SUBPS, SUBPD,
FSUB.

The instructions XOR, SUB and PXOR are useful for breaking an unnecessary dependence,
but it doesn't work on e.g. the PM processor.

You may also use these instructions for breaking dependences on the flags. For example,
rotate instructions have a false dependence on the flags in P4. This can be removed in the
following way:

; Example 8.14. Break false dependence on flags
ror eax, 1
sub edx, edx ; Remove false dependence on the flags
ror ebx, 1

If you don't have a spare register for this purpose, then use an instruction that doesn't
change the register, but only the flags, such as CMP or TEST. You cannot use CLC for
breaking dependences on the carry flag.

8.12 Choosing the optimal instructions
There are many possibilities for replacing less efficient instructions with more efficient ones.
The most important cases are summarized below.

INC and DEC
These instructions have a problem with partial flag access, as explained on page 102.
Always replace INC EAX with ADD EAX,1, etc.

8-bit and 16-bit integers
Replace MOV AL,BYTE PTR [MEM8] by MOVZX EAX,BYTE PTR [MEM8]
Replace MOV BX,WORD PTR [MEM16] by MOVZX EBX,WORD PTR [MEM16]

Avoid using the high 8-bit registers AH, BH, CH, DH.

http://www.xbitlabs.com/articles/cpu/print/replay.html

 106

If 8-bit or 16-bit integers can be packed and handled in parallel, then use MMX or XMM
registers.

These rules apply even in 16-bit mode.

Memory stores
Most memory store instructions use 2 µops. Simple store instructions of the type MOV
[MEM],EAX use only one µop if the memory operand has no SIB byte. A SIB byte is
needed if there is more than one pointer register, if there is a scaled index register, or if ESP
is used as base pointer. The short-form store instructions can use a general purpose
register (see page 90). Examples:

; Example 8.15. uop counts for memory stores
mov array[ecx], eax ; 1 uop
mov array[ecx*4], eax ; 2 uops because of scaled index
mov [ecx+edi], eax ; 2 uops because of two index registers
mov [ebp+8], ebx ; 1 uop
mov [esp+8], ebx ; 2 uops because esp used
mov es:[mem8], cl ; 1 uop
mov es:[mem8], ch ; 2 uops because high 8-bit register used
movq [esi], mm1 ; 2 uops because not a general purp.register
fstp [mem32] ; 2 uops because not a general purp.register

The corresponding memory load instructions all use only 1 µop. A consequence of these
rules is that a procedure which has many stores to local variables on the stack should use
EBP as pointer, while a procedure which has many loads and few stores may use ESP as
pointer, and save EBP for other purposes.

Shifts and rotates
Shifts and rotates on integer registers are quite slow on the P4 because the integer
execution unit transfers the data to the MMX shift unit and back again. Shifts to the left may
be replaced by additions. For example, SHL EAX,3 can be replaced by 3 times ADD
EAX,EAX. This does not apply to the P4E, where shifts are as fast as additions.

Rotates through carry (RCL, RCR) by a value different from 1 or by CL should be avoided.

If the code contains many integer shifts and multiplications, then it may be advantageous to
execute it in MMX or XMM registers on P4.

Integer multiplication
Integer multiplication is slow on the P4 because the integer execution unit transfers the data
to the FP-MUL unit and back again. If the code has many integer multiplications then it may
be advantageous to handle the data in MMX or XMM registers.

Integer multiplication by a constant can be replaced by additions. Replacing a single
multiply instruction by a long sequence of ADD instructions should, of course, only be done
in critical dependence chains.

LEA
The LEA instruction is split into additions and shifts on the P4 and P4E. LEA instructions
with a scale factor may preferably be replaced by additions. This applies only to the LEA
instruction, not to any other instructions with a memory operand containing a scale factor.

In 64-bit mode, a LEA with a RIP-relative address is inefficient. Replace LEA RAX,[MEM]
by MOV RAX, OFFSET MEM .

 107

Register-to-register moves with FP, mmx and xmm registers
The following instructions, which copy one register into another, all have a latency of 6
clocks on P4 and 7 clocks on P4E: MOVQ MM,MM, MOVDQA XMM,XMM, MOVAPS XMM,XMM,
MOVAPD XMM,XMM, FLD ST(X), FST ST(X), FSTP ST(X). These instructions have no
additional latency. A possible reason for the long latency of these instructions is that they
use the same execution unit as memory stores (port 0, MOV).

There are several ways to avoid this delay:

• The need for copying a register can sometimes be eliminated by using the same
register repeatedly as source, rather than destination, for other instructions.

• With floating point registers, the need for moving data from one register to another
can often be eliminated by using FXCH. The FXCH instruction has no latency.

• If the value of a register needs to be copied, then use the old copy in the most critical
dependence path, and the new copy in a less critical path. The following example
calculates Y = (a+b)2.5 :

 ; Example 8.16. Optimize register-to-register moves
 fld [a]
 fadd [b] ; a+b
 fld st ; Copy a+b
 fxch ; Get old copy
 fsqrt ; (a+b)0.5
 fxch ; Get new (delayed) copy
 fmul st,st ; (a+b)2
 fmul ; (a+b)2.5
 fstp [y]

The old copy is used for the slow square root, while the new copy, which is available
6-7 clocks later, is used for the multiplication.

If none of these methods solve the problem, and latency is more important than
throughput, then use faster alternatives:

• For 80-bit floating point registers:

 fld st(0) ; copy register

can be replaced by

 fldz ; make an empty register
 xor eax, eax ; set zero flag
 fcmovz st, st(1) ; conditional move

• For 64-bit MMX registers:

 movq mm1, mm0

can be replaced by the shuffle instruction

 pshufw mm1, mm0, 11100100B

• For 128-bit XMM registers:

 movdqa xmm1, xmm0

 108

can be replaced by the shuffle instruction

 pshufd xmm1, xmm0, 11100100B

or even faster:

 pxor xmm1, xmm1 ; Set new register to 0
 por xmm1, xmm0 ; OR with desired value

These methods all have lower latencies than the register-to-register moves. However, a
drawback of these tricks is that they use port 1 which is also used for all calculations on
these registers. If port 1 is saturated, then it may be better to use the slow moves, which
go to port 0.

8.13 Bottlenecks in P4 and P4E
It is important, when optimizing a piece of code, to find the limiting factor that controls
execution speed. Tuning the wrong factor is unlikely to have any beneficial effect. In the
following paragraphs, I will explain each of the possible limiting factors. You have to
consider each factor in order to determine which one is the narrowest bottleneck, and then
concentrate your optimization effort on that factor until it is no longer the narrowest
bottleneck.

Memory access
If the program is accessing large amounts of data, or if the data are scattered around
everywhere in the memory, then we will have many data cache misses. Accessing
uncached data is so time consuming that all other optimization considerations are
unimportant. The caches are organized as aligned lines of 64 bytes each. If one byte within
an aligned 64-bytes block has been accessed, then we can be certain that all 64 bytes will
be loaded into the level-1 data cache and can be accessed at no extra cost. To improve
caching, it is recommended that data that are used in the same part of the program be
stored together. You may align large arrays and structures by 64. Store local variables on
the stack if you don't have enough registers.

The level-1 data cache is only 8 kb on the P4 and 16 kb on P4E. This may not be enough to
hold all the data, but the level-2 cache is more efficient on the P4/P4E than on previous
processors. Fetching data from the level-2 cache will cost only a few clock cycles extra.

Data that are unlikely to be cached may be prefetched before they are used. If memory
addresses are accessed consecutively, then they will be prefetched automatically. You
should therefore preferably organize the data in a linear fashion so that they can be
accessed consecutively, and access no more than four large arrays, preferably less, in the
critical part of the program.

The PREFETCH instructions can improve performance in situations where you access
uncached data and cannot rely on automatic prefetching. However, excessive use of the
PREFETCH instructions can slow down program throughput on P4. If you are in doubt
whether a PREFETCH instruction will benefit the program, then you may simply load the data
needed into a spare register rather than using a PREFETCH instruction. If you have no spare
register then use an instruction which reads the memory operand without changing any
register, such as CMP or TEST. As the stack pointer is unlikely to be part of any critical
dependence chain, a useful way to prefetch data is CMP ESP,[MEM], which will change
only the flags.

 109

When writing to a memory location that is unlikely to be accessed again soon, you may use
the non-temporal write instructions MOVNTI, etc., but excessive use of non-temporal moves
will slow down performance on P4.

Further guidelines regarding memory access can be found in "Intel Pentium 4 and Intel
Xeon Processor Optimization Reference Manual".

Execution latency
The executing time for a dependence chain can be calculated from the latencies listed in
manual 4: "Instruction tables". Many instructions have an additional latency of 1 clock cycle
when the subsequent instruction goes to a different execution unit. See page 99 for further
explanation.

If long dependence chains limit the performance of the program then you may improve
performance by choosing instructions with low latency, minimizing the number of transitions
between execution units, breaking up dependence chains, and utilizing all opportunities for
calculating subexpressions in parallel.

Always avoid memory intermediates in dependence chains, as explained on page 103.

Execution unit throughput
If your dependence chains are short, or if you are working on several dependence chains in
parallel, then the program is most likely limited by throughput rather than latency. Different
execution units have different throughputs. ALU0 and ALU1, which handle simple integer
instructions and other common µops, both have a throughput of 2 instructions per clock
cycle. Most other execution units have a throughput of one instruction per clock cycle. When
working with 128-bit registers, the throughput is usually one instruction per two clock cycles.
Division and square roots have the lowest throughputs. Each throughput measure applies to
all µops executing in the same execution subunit (see page 96).

If execution throughput limits the code then try to move some calculations to other execution
subunits.

Port throughput
Each of the execution ports can receive one µop per clock cycle. Port 0 and port 1 can
receive an additional µop at each half-clock tick if these µops go to the double-speed units
ALU0 and ALU1. If all µops in the critical part of the code go to the single-speed units under
port 1, then the throughput will be limited to 1 µop per clock cycle. If the µops are optimally
distributed between the four ports, then the throughput may be as high as 6 µops per clock
cycle. Such a high throughput can only be achieved in short bursts, because the trace
cache and the retirement station limit the average throughput to less than 3 µops per clock
cycle.

If port throughput limits the code then try to move some µops to other ports. For example,
MOV REGISTER,IMMEDIATE can be replaced by MOV REGISTER,MEMORY.

Trace cache delivery
The trace cache can deliver a maximum of approx. 3 µops per clock cycle. On P4, some
µops require more than one trace cache entry, as explained on page 89. The delivery rate
can be less than 3 µops per clock cycle for code that contains many branches and for tiny
loops with branches inside (see page 92).

If none of the abovementioned factors limit program performance, then you may aim at a
throughput of approx. 3 µops per clock cycle.

Choose the instructions that generate the smallest number of µops. Avoid µops that require
more than one trace cache entry on P4 (see page 89).

 110

Trace cache size
The trace cache can hold less code than a traditional code cache using the same amount of
physical chip space. The limited size of the trace cache can be a serious bottleneck if the
critical part of the program doesn't fit into the trace cache.

µop retirement
The retirement station can handle 3 µops per clock cycle. Taken branches can only be
handled by the first of the three slots in the retirement station.

If you aim at an average throughput of 3 µops per clock cycle then avoid an excessive
number of jumps, calls and branches. Small critical loops should preferably have a number
of µops divisible by 3 (see page 101).

Instruction decoding
If the critical part of the code doesn't fit into the trace cache, then the limiting stage may be
instruction decoding. The decoder can handle one instruction per clock cycle, provided that
the instruction generates no more than 4 µops and no microcode, and does not have an
excessive number of prefixes (see page 93). If decoding is a bottleneck, then you may try to
minimize the number of instructions rather than the number of µops.

Branch prediction
The calculations of latencies and throughputs are only valid if all branches are predicted.
Branch mispredictions can seriously slow down performance when latency or throughput is
the limiting factor. The inability of the P4 to cancel bogus µops after a misprediction can
seriously degrade performance.

Avoid poorly predictable branches in critical parts of the code unless the alternative (e.g.
conditional moves) outweighs the advantage by adding costly extra dependences and
latency. See page 19 for details.

Replaying of µops
The P4 often wastes an excessive amount of resources on replaying bogus µops after
cache misses, failed store-to-load forwarding, etc. This can result in a serious degradation
of performance, especially when there are memory intermediates in long dependence
chains.

 111

9 AMD pipeline

9.1 The pipeline in AMD processors
The AMD microprocessors are based on the same principles of out-of-order execution and
register renaming as Intel processors.

Instructions are split up as little as possible and as late as possible in the pipeline. Each
read-modify macro-instruction is split into a read and a modify micro-instruction in the
execution stage and joined together into the macro-operation before retirement. A macro-
operation in AMD terminology is somewhat similar to a fused micro-operation in Intel
terminology. The K8 microarchitecture has no execution units bigger than 64 or 80 bits,
while the K10 microarchitecture has 128-bit execution units in the floating point pipeline so
that 128-bit XMM instructions can be handled in a single macro-instruction.

The most important difference from Intel's microarchitecture is that the AMD micro-
architecture contains three parallel pipelines. The instructions are distributed between the
three pipelines right after the fetch stage. In simple cases, the instructions stay in each their
pipeline all the way to retirement.

The exact length of the pipelines is not known but it can be inferred that it has approximately
twelve stages, based on the fact that the branch misprediction penalty is measured to 12
clock cycles.

The following list of stages is based on publications from AMD as well as an independent
analysis published by Chip Architect.

1. Instruction fetch 1. 32 bytes per clock cycle on K10, 16 bytes on K7 and K8.

2. Instruction fetch 2 and branch prediction.

3. Pick/Scan. Can buffer up to 7 instructions. Distributes three instructions into the
three decoder pipelines. The following stages are all split into three parallel pipes.

4. Decode 1. Splits the instruction codes into their components.

5. Decode 2. Determines input and output registers.

6. Pack. Up to six macro-operations generated from the decoders are arranged into
lines of three macro-operations for the three execution pipelines.

7. Pack/Decode. Register renaming. Integer registers are read from the "Integer Future
File and Register File". Submits integer macro-operations to the three integer pipes.
Submits floating point macro-operations to the floating point pipes.

Integer pipes:

8. Dispatch. Sends macro-operations to a reservation station with 3x8 entries.

9. Schedule. Schedules macro-operations out of order. Read-modify and read-modify-
write macro-operations are split into micro-operations which are submitted to the
arithmetic logic units (ALU), the address generation units (AGU), and the load/store
units.

10. Execution units and address generation units. Each of the three integer pipes has
one ALU and one AGU. Integer arithmetic, logic and shift operations are executed in
this stage. Integer multiplication can only be handled in pipe 0. All other integer

 112

instructions can be handled by any of the three integer pipes.

11. Data cache access. Submits a read or write request to the data cache.

12. Data cache response. The data cache returns a hit or miss response for read
operations.

13. Retirement. Macro-operations are retired in order. The data cache stages are
skipped if there is no memory operation.

Floating point pipes:

8. Stack map. Maps floating point stack registers to virtual registers.

9. Register renaming.

10. Dispatch. Scheduler write.

11. Scheduler. Uses a reservation station with 3x12 entries to schedule instructions out
of order. Micro-operations are targeted for one of the three floating point execution
units.

12. Register read. Reads source operand register values.

13. Execution units. The three execution units in the floating point pipes are named
FADD, FMUL and FMISC. These units are specialized for each their purpose. The
floating point execution units are fully pipelined in three stages to handle floating
point operations with latencies longer than one. Integer vector operations are
handled by the floating point units, not the integer ALU's.

14. - 16. The processes of address generation, cache access and retirement are
probably shared with the integer pipelines.

The floating point pipeline is longer than the integer pipeline because of the extra stages for
stack map, register renaming, and register read. The minimum measured latency of floating
point instructions is 2 clock cycles because of the extra register read stage. The maximum
latency of floating point instructions is 4 clock cycles.

The length of the floating point pipeline is difficult to measure, because the branch
misprediction penalty measures only the length of the integer pipeline.

You may think of the pipeline structure as consisting of an in-order front end, an out-of-order
execution core, and an in-order retirement unit. However, the linear picture of the pipeline
as sketched above is somewhat misleading, because some processes take place in
parallel, more or less independently of each other. Address generation takes several clock
cycles and may start before the ALU operation. Read-modify and read-modify-write macro-
operations are split into micro-operations that go to different units and at different times in
the out-of-order core. The in-order front end, the branch prediction unit, address-generation
units, load-store units, integer arithmetic-logic units, and floating point units are all separate
structures with each their pipeline. The integer ALU units and the floating point units can do
operations out of order. The load-store units are doing all memory reads in order and all
memory writes in order, while a read can be executed before a subsequent write. The other
units are doing all operations in order.

The time it takes to calculate an address and read from that address in the level-1 cache is
3 clock cycles if the segment base is zero and 4 clock cycles if the segment base is
nonzero, according to my measurements. Modern operating systems use paging rather than
segmentation to organize memory. You can therefore assume that the segment base is

 113

zero in 32-bit and 64-bit operating systems (except for the thread information block which is
accessed through FS or GS). The segment base is almost always nonzero in 16-bit systems
in protected mode as well as real mode.

Complex instructions that require more than two macro-operations are so-called vector path
instructions. These instructions make exclusive use of all three slots in a decode line, a
reorder buffer line, etc. so that no other instructions can go in parallel. The macro-
operations are generated from microcode ROM in stage 3 - 5 in the pipeline.

The K7 processor does not have double instructions. It uses the vector path process for all
instructions that require more than one macro-operation. Otherwise, the microarchitecture of
the K7 processor is very similar to the 64-bit architecture of K8 and K10, as outlined above.
Earlier AMD processors have a different microarchitecture which will not be treated here.

Literature:
AMD Athlon� Processor x86 Code Optimization Guide, Feb. 2002.
AMD Software Optimization Guide for AMD64 Processors, 2005, 2008.
Fred Weber: AMD�s Next Generation Microprocessor Architecture. Oct. 2001.
Hans de Vries: Understanding the detailed Architecture of AMD's 64 bit Core, 2003.
www.chip-architect.com.
Yury Malich: AMD K10 Micro-Architecture. 2007. www.xbitlabs.com.

The research on the AMD pipeline has been carried out with the help of Andreas Kaiser and
Xucheng Tang.

9.2 Instruction fetch
The instruction fetcher can fetch 32 bytes of code per clock cycle from the level-1 code on
K10. On K7 and K8, it can fetch 16 bytes of code per clock cycle into a 32 bytes buffer.
Instruction fetching can therefore be a bottleneck on the older processors if the code
contains many long instructions or many jumps. The delivery bandwidth of code from the
level-2 cache has been measured to 4.22 bytes per clock on average for K10, and 2.56
bytes per clock on K8.

The fetched packets are aligned by 32 on K10 and by 16 on K7 and K8. This has
implications for code alignment. Critical subroutine entries and loop entries should not start
near the end of a 16 byte block. You may align critical entries by 16 or at least make sure
there is no 16-byte boundary in the first three instructions after a critical label.

Branch information stored in the code cache and the branch target buffer is used for
fetching code after predicted branches. The throughput for jumps and taken branches is one
jump per two clock cycles. I take this as an indication that the fetch buffer can only contain
contiguous code. It cannot span across a predicted branch.

9.3 Predecoding and instruction length decoding
An instruction can have any length from 1 to 15 bytes. The instruction boundaries are
marked in the code cache and copied into the level-2 cache. Instruction length decoding is
therefore rarely a bottleneck, even though the instruction length decoder can handle only
one instruction per clock cycle.

The level-1 code cache contains a considerable amount of predecode information. This
includes information about where each instruction ends, where the opcode byte is, as well
as distinctions between single, double and vector path instructions and identification of
jumps and calls. Some of this information is copied to the level-2 cache, but not all. The low
bandwidth for instructions coming from the level-2 cache may be due to the process of
adding more predecode information.

http://www.chip-architect.com/
http://www.xbitlabs.com/articles/cpu/display/amd-k10.html

 114

My experiments show that it is possible to decode three instructions in one clock cycle on
K8 even if the third instruction starts more than 16 bytes after the first one, provided that
there are enough bytes left in the 32 byte buffer.

The throughput of the microprocessor is three instructions per clock cycle, even for an
instruction stream that contains predicted jumps. We know that a jump incurs a delay
bubble in the instruction fetch process, but there is a buffer between fetch and decoding
which enables it to catch up after this delay.

A recommendation in some versions of AMD's Optimization Guide says that decoding can
be improved by aligning groups of three instructions by eight. This is done by inserting
dummy prefixes to make each group of three instructions exactly eight bytes long. This
recommendation is obsolete, according to my measurements. The decoders can always
handle three relatively short instructions per clock cycle regardless of alignment. There is no
advantage in making instructions longer. Only in rare cases with relatively long instructions
have I observed an improvement by making instructions longer to make groups of
instructions a multiple of 8 bytes long (regardless of alignment). But making instructions
longer is more likely to have a negative effect.

Each of the instruction decoders can handle three prefixes per clock cycle. This means that
three instructions with three prefixes each can be decoded in the same clock cycle. An
instruction with 4 - 6 prefixes takes an extra clock cycle to decode.

9.4 Single, double and vector path instructions

• Instructions that generate one macro-operation are called direct path single

instructions.

• Instructions that generate two macro-operations are called direct path double
instructions (K8 only).

• Instructions that generate more than two macro-operations are called vector path
instructions.

The number of macro-operations generated by each instruction is listed in manual 4:
"Instruction tables".

There is no difference in throughput between using one double instruction or two single
instructions, except for the reduction in code size. The throughput is still limited to three
macro-operations per clock cycle, not three instructions per clock cycle. The source of this
bottleneck is most probably the retirement stage. If the bottleneck was in the schedulers
then we would not expect a double instruction in the floating point scheduler to limit the
throughput of the integer schedulers, or vice versa.

Vector path instructions are less efficient than single or double instructions because they
require exclusive access to the decoders and pipelines and do not always reorder optimally.
For example:

; Example 9.1. AMD instruction breakdown
xchg eax, ebx ; Vector path, 3 ops
nop ; Direct path, 1 op
xchg ecx, edx ; Vector path, 3 ops
nop ; Direct path, 1 op

This sequence takes 4 clock cycles to decode because the vector path instructions must
decode alone.

 115

Most read-modify and read-modify-write instructions generate only one macro-operation.
These instructions are therefore more efficient than using separate read and modify
instructions.

The latency from the memory operand to the result of a read-modify instruction is the same
as the latency of a read plus the latency of the arithmetic operation. For example, the
instruction ADD EAX,[EBX] has a latency of 1 from EAX input to EAX output, and a latency
of 4 from EBX to EAX output in 32 bit mode. An 8-bit or 16-bit memory read behaves like a
read-modify instruction. For example, MOV AX,[EBX] takes one clock cycle more than
MOV EAX,[EBX].

A macro-operation can have any number of input dependencies. This means that
instructions with more than two input dependencies, such as MOV [EAX+EBX],ECX, ADC
EAX,EBX and CMOVBE EAX,EBX, generate only one macro-operation, while they require
two micro-operations on Intel processors.

9.5 Stack engine
The K10 has a stack engine very similar to the one on Intel processors (p. 61). This makes
stack operations (PUSH, POP, CALL, RET) more efficient on K10 than on earlier processors.

9.6 Integer execution pipes
Each of the three integer execution pipes has its own ALU (Arithmetic Logic Unit) and its
own AGU (Address Generation Unit). Each of the three ALU's can handle any integer
operation except multiplication. This means that it is possible to do three single integer
instructions in the same clock cycle if they are independent. The three AGU's are used for
memory read, write and complex versions of the LEA instruction. It is possible to do two
memory operations and one LEA in the same clock cycle. It is not possible to do three
memory operations because there are only two ports to the data cache.

The K10 can do a LEA instructions with no more than two operands in the ALU's, even if it
has a SIB byte. A LEA instruction with a scale factor or with both base register, index
register and addend is executed in the AGU. It is unknown whether a LEA with a RIP-
relative address is executed in the AGU. A LEA executed in the AGU has a latency of 2
clock cycles. If the AGU and ALU are at the same stage in the pipeline, as the model
suggests, then the extra latency is most likely explained by assuming that there is no fast
data forwarding path between these two units.

Integer multiplication can only be done in ALU0. A 32 bit integer multiplication takes 3 clock
cycles and is fully pipelined so that a new multiplication can begin every clock cycle. Integer
multiplication instructions with the accumulator as an implicit operand and only one explicit
operand generate a double sized result in DX:AX, EDX:EAX or RDX:RAX. These instructions
use ALU1 for the high part of the result. It is recommended to use multiplication instructions
that do not produce a double sized result in order to free ALU1 and EDX for other purposes.
For example, replace MUL EBX with IMUL EAX,EBX if the result can fit into 32 bits.

9.7 Floating point execution pipes
The three execution units in the floating point pipes are named FADD, FMUL and FMISC.
FADD can handle floating point addition. FMUL can handle floating point multiplication and
division. FMISC can handle memory writes and type conversions. All three units can handle
memory reads. The floating point units have their own register file and their own 80-bits data
bus.

 116

The latency for floating point addition and multiplication is 4 clock cycles. The units are fully
pipelined so that a new operation can start every clock cycle. Division takes 11 clock cycles
and is not fully pipelined. The latency for move and compare operations is 2 clock cycles.

The 3DNow instructions have the same latency as the XMM instructions. There is hardly
any advantage in using 3DNow instructions rather than XMM instructions unless you need
the approximate reciprocal instruction which is more accurate and efficient in the 3DNow
version than in the XMM version. The 3DNow instruction set is available only on AMD
processors.

SIMD integer operations in MMX and XMM registers are handled in the floating point
pipelines, not the integer pipelines. The FADD and FMUL pipes both have an integer ALU
that can handle addition, Boolean and shift operations. Integer multiplications are handled
only by FMUL.

The minimum latency for the floating point units is 2 clock cycles. This latency is caused by
the pipeline design, not by lower clock frequency or staggered addition. Most SIMD integer
ALU operations have a latency of 2 clocks. Integer multiplication has a latency of 3 clocks.
The units are fully pipelined so that a new operation can start every clock cycle.

Macro-operations for the floating point units can be divided into five categories according to
which execution unit they are going to. I will designate these categories as follows:

Handled by unit macro-operation
category FADD FMUL FMISC
FADD X
FMUL X
FMISC X
FA/M X X
FANY X X X

Table 9.1. AMD floating point macro-operation categories

The floating point scheduler sends each macro-operation to a unit that can handle it. A
macro-operation in the FA/M category can go to either the FADD or the FMUL unit. A
macro-operation in the FANY category can go to any of the three units. The categories for
all floating point instructions are listed under "Instruction timings and µop breakdown for
AMD" in manual 4: "Instruction tables".

Unfortunately, the scheduler does not distribute the macro-operations optimally among the
three units. Macro-operations in the FA/M category are scheduled according to the simplest
possible algorithm: FA/M macro-operations go alternately to FADD and FMUL. This
algorithm makes sure that two FA/M macro-operations submitted in the same clock cycle do
not go to the same unit. A status bit is remembering which of the two units was used last,
and this bit can be remembered indefinitely. I have found no way to reset it.

The scheduling algorithm for macro-operations in the FANY category is only slightly more
sophisticated. A macro-operation in the FANY category goes preferentially to the unit that is
determined by which of the three pipelines it happens to come from. The first FANY macro-
operation after a series of integer macro-operations goes to FMISC. A second FANY macro-
operation in the same clock cycle goes to FMUL, and a possible third FANY macro-
operation goes to FADD. If other macro-operations submitted in the same clock cycle need
a particular floating point unit then the FANY macro-operations can be redirected to a
different unit.

The floating point scheduler does not check whether a particular unit is vacant or has a long
queue when deciding where to send a macro-operation of category FA/M or FANY. If, for
example, an instruction stream generates ten macro-operations of category FADD and then

 117

one macro-operation of category FA/M, then there is a 50% probability that the FA/M
macro-operation will go to the FADD unit although it could save a clock cycle by sending it
to FMUL.

This suboptimal scheduling of macro-operations can significantly slow down the execution
of code with many floating point instructions. This problem can be diagnosed by testing a
small critical piece of code with a performance monitor counter set up for each of the three
floating point units. The problem is difficult to solve, however. Sometimes it is possible to
improve the distribution of macro-operations by changing the instruction order, by using
different instructions, or by inserting NOPs. But there is no general and reliable way to solve
the problem.

Another scheduling problem which can have even worse consequences is explained in the
next paragraph.

9.8 Mixing instructions with different latency
There is a scheduling problem when mixing instructions with different latencies. The floating
point execution units are pipelined so that if a macro-operation with latency 4 starts at
time=0 and finishes at time=3, then a second macro-operation of the same kind can start at
time=1 and end at time=4. However, if the second macro-operation has latency 3 then it
cannot start at time=1 because it would end at time=3, simultaneously with the preceding
macro-operation. There is only one result bus for each execution unit and this prevents
macro-operations from delivering their results simultaneously. The scheduler prevents a
clash between two results by not dispatching a macro-operation to an execution unit if it can
be predicted that the result bus will not be vacant when the macro-operation is finished. It is
not able to redirect the macro-operation to another execution unit.

This problem is illustrated by the following example:

; Example 9.2. AMD mixing instruction with different latencies (K8)
 ; Unit time op 1 time op 2
mulpd xmm0, xmm1 ; FMUL 0-3 1-4
mulpd xmm0, xmm2 ; FMUL 4-7 5-8
movapd xmm3, xmm4 ; FADD/FMUL 0-1 8-9
addpd xmm3, xmm5 ; FADD 2-5 10-13
addpd xmm3, xmm6 ; FADD 6-9 14-17

Each instruction in this example generates two macro-operations, one for each of the 64-bit
parts of the 128-bit register. The first two macro-operations are multiplications with a latency
of 4 clock cycles. They start at time=0 and 1, and end at time=3 and 4, respectively. The
second two multiplication macro-operations need the results of the preceding macro-
operations. Therefore they cannot start until time=4 and 5, and end at time=7 and 8,
respectively. So far so good. The MOVAPD instruction generates two macro-operations of
category FA/M with latency 2. One of these macro-operations goes to the FADD pipe which
is vacant so that this macro-operation can start immediately. The other macro-operation
from MOVAPD goes to the FMUL pipe because macro-operations in the FA/M category
alternate between the two pipes. The FMUL pipe is ready to start executing a new macro-
operation at time=2, but the MOVAPD macro-operation can't start at time=2 because then it
would end at time=3 where the first MULPD macro-operation finishes. It can't start at time=3
because then it would end at time=4 where the second MULPD macro-operation finishes. It
can't start at time=4 or 5 because the next two MULPD macro-operations start there. It can't
start at time=6 or 7 because then the result would clash with the results of the next two
MULPD macro-operations. So time=8 is the first possible start time for this macro-operation.
The consequence is that the subsequent additions, which are dependent on the MOVAPD,
will be delayed 7 clock cycles even though the FADD unit is vacant.

 118

There are two ways to avoid the problem in the above example. The first possibility is to
reorder the instructions and put the MOVAPD before the two MULPD instructions. This would
make the two macro-operations from MOVAPD both start at time=0 in the FADD and the
FMUL unit, respectively. The subsequent multiplications and additions will then run in the
two pipes without interfering with each other.

The second possible solution is to replace XMM4 by a memory operand. The
MOVAPD XMM3,[MEM] instruction generates two macro-operations for the FMISC unit
which is vacant in this example. There is no conflict between macro-operations in different
execution pipes, regardless of differences in latency.

The throughput is of course higher on K10 than on K8, but the deadlock problem can still
occur for all instructions that use floating point registers, MMX registers or XMM registers.
As a general guideline, it can be said that the deadlock can occur when a macro-operation
with latency 2 follows after at least two macro-operations with a longer latency scheduled for
the same floating point execution unit and the macro-operations are independent in the
sense that one doesn't have to wait for the result of another. The deadlock can be avoided
by putting the instructions with short latency first or by using instructions that go to different
execution units.

The latencies and execution units of the most common macro-operations are listed below. A
complete list can be found in manual 4: "Instruction tables". Remember that a 128-bit
instruction typically generates one macro-operation on K10 and two macro-operations on
K8.

Macro-operation type Latency Execution unit

register-to-register move 2 FADD/FMUL alternate
register-to-memory move 2 FMISC
memory-to-register 64 bit 4 any
memory-to-register 128 bit 4 FMISC
integer addition 2 FADD/FMUL alternate
integer Boolean 2 FADD/FMUL alternate
shift, pack, unpack, shuffle 2 FADD/FMUL alternate
integer multiplication 3 FMUL
floating point addition 4 FADD
floating point multiplication 4 FMUL
floating point division 11 FMUL (not pipelined)
floating point compare 2 FADD
floating point max/min 2 FADD
floating point reciprocal 3 FMUL
floating point Boolean 2 FMUL
type conversion 2-4 FMISC
Table 9.2. Execution units in AMD

9.9 64 bit versus 128 bit instructions
It is a big advantage to use 128-bit instructions on K10, but not on K8 because each 128-bit
instruction is split into two 64-bit macro-operations on the K8.

128 bit memory write instructions are handled as two 64-bit macro-operations on K10, while
128 bit memory read is done with a single macro-operation on K10 (2 on K8).

128 bit memory read instructions use only the FMISC unit on K8, but all three units on K10.
It is therefore not advantageous to use XMM registers just for moving blocks of data from
one memory position to another on the k8, but it is advantageous on K10.

 119

9.10 Data delay between differently typed instructions
XMM instructions come in three different types according to the types of operands they are
intended for:

1. Integer instructions. Most of these instructions have a name that begins with P for
Packed, for example POR.

2. Single precision floating point instructions. These instructions have a name that ends
with SS (Scalar Single precision) or PS (Packed Single precision), for example ORPS.

3. Double precision floating point instructions. These instructions have a name that
ends with SD (Scalar Double precision) or PD (Packed Double precision), for
example ORPD.

The three instructions POR, ORPS and ORPD are doing exactly the same thing. They can be
used interchangeably, but there is a delay when the output from an integer instruction is
used as input for a floating point instruction, or vice versa. There are two possible
explanations for this delay:

Explanation 1: The XMM registers have some tag bits that are used for remembering
whether floating point values are normal, denormal or zero. These tag bits have to be set
when the output of an integer instruction is used as input for a single or double precision
floating point instruction. This causes a so-called reformatting delay.

Explanation 2: There is no fast data forwarding path between the integer and floating point
SIMD units. This gives a delay analogously to the delay between execution units on the P4.

Explanation 2 is supported by the fact that there is no delay between single precision and
double precision floating point instructions, but there is a delay from floating point to integer
instructions.

There is no difference in delay after instructions that read from memory and do no
calculation. And there is no delay before instructions that write to memory and do no
calculation. Therefore, you may use the MOVAPS instruction rather than the one byte longer
MOVAPD or MOVDQA instructions for reading and writing memory.

There is often a two clock cycle delay when the output of a memory read instruction
(regardless of type) is used as input to a floating point instruction. This is in favor of
explanation 1.

It does not make sense to use the wrong type of instruction for arithmetic operations, but for
instructions that only move data or do Boolean operations there may be advantages in
using the wrong type in cases where no delay is incurred. The instructions with names
ending in PS are one byte shorter than other equivalent instructions.

9.11 Partial register access
The AMD processor always keeps the different parts of an integer register together. Thus,
AL and AH are not treated as independent by the out-of-order execution mechanism. This
can cause false dependences in a code that writes to part of a register. For example:

; Example 9.3. AMD partial register access
imul ax, bx
mov [mem1], ax
mov ax, [mem2]

 120

In this case the third instruction has a false dependence on the first instruction caused by
the high half of EAX. The third instruction writes to the lower 16 bits of EAX (or RAX) and
these 16 bits have to be combined with the rest of EAX before the new value of EAX can be
written. The consequence is that the move to AX has to wait for the preceding multiplication
to finish because it cannot separate the different parts of EAX. This false dependence can
be removed by inserting an XOR EAX,EAX instruction before the move to AX, or by
replacing MOV AX,[MEM2] by MOVZX EAX,[MEM2].

The above example behaves the same regardless of whether it is executed in 16 bit mode,
32 bit mode or 64 bit mode. To remove the false dependence in 64 bit mode it is sufficient to
neutralize EAX. It is not necessary to neutralize the full RAX because a write to the lower 32
bits of a 64 bit register always resets the high half of the 64 bit register. But a write to the
lower 8 or 16 bits of a register does not reset the rest of the register.

This rule does not apply to the XMM registers on K8. Each 128-bit XMM register is stored
as two independent 64-bit registers on K8.

9.12 Partial flag access
The AMD processor splits the arithmetic flags into at least the following groups:

1. Zero, Sign, Parity and Auxiliary flags

2. Carry flag

3. Overflow flag

4. Non-arithmetic flags

This means that an instruction that modifies only the carry flag has no false dependence on
the zero flag, but an instruction that modifies only the zero flag has a false dependence on
the sign flag. Examples:

; Example 9.4. AMD partial flags access
add eax,1 ; Modifies all arithmetic flags
inc ebx ; Modifies all except carry flag. No false dependence
jc L ; No false dependence on EBX
bsr ecx,edx ; Modifies only zero flag. False depend. on sign flag
sahf ; Modifies all except overflow flag
seto al ; No false dependence on AH

9.13 Store forwarding stalls
There is a penalty for reading from a memory position immediately after writing to the same
position if the read is larger than the write, because the store-to-load forwarding mechanism
doesn't work in this case. Examples:

; Example 9.5. AMD store forwarding
mov [esi],eax ; Write 32 bits
mov bx,[esi] ; Read 16 bits. No stall
movq mm0,[esi] ; Read 64 bits. Stall
movq [esi],mm1 ; Write after read. No stall

There is also a penalty if the read doesn't start at the same address as the write:

; Example 9.6. Store forwarding stall
mov [esi],eax ; Write 32 bits
mov bl,[esi] ; Read part of data from same address. No stall

 121

mov cl,[esi+1] ; Read part of data from different address. Stall

There is also a penalty if the write originates from AH, BH, CH or DH:

; Example 9.7. Store forwarding stall for AH
mov [esi],al ; Write 8 bits
mov bl,[esi] ; Read 8 bits. No stall
mov [edi],ah ; Write from high 8-bit register
mov cl,[edi] ; Read from same address. Stall

9.14 Loops
The branch prediction mechanism for the AMD processor is described on page 24.

The speed of small loops is often limited by instruction fetching on the AMD. A small loop
with no more than 6 macro-operations can execute in 2 clock cycles per iteration if it
contains no more than one jump and no 32-byte boundary on K10 or 16-byte boundary on
K8. It will take one clock extra per iteration if there is a 32-byte boundary in the code
because it needs to fetch an extra 32-byte block on K10, or 16-byte boundary on K7 or K8.

The maximum fetching speed can be generalized by the following rule:

The minimum execution time per iteration for a loop is approximately equal to the
number of 32-byte boundaries on K10, or 16-byte boundaries on K8, in the code
plus 2 times the number of taken branches and jumps.

Example:

; Example 9.8. AMD branch inside loop
 mov ecx,1000
L1: test bl,1
 jz L2
 add eax,1000
L2: dec ecx
 jnz L1

Assume that there is a 32-byte boundary at the JNZ L1 instruction. Then the loop will take
3 clocks if the JZ L2 doesn't jump, and 5 clocks if the JZ jumps. In this case, we can
improve the code by inserting a NOP before L1 so that the 32-byte boundary is moved to L2.
Then the loop will take 3 and 4 clocks respectively. We are saving one clock count in the
case where JZ L2 jumps because the 32-byte boundary has been moved into the code that
we are bypassing.

These considerations are only important if instruction fetching is the bottleneck. If something
else in the loop takes more time than the computed fetching time then there is no reason to
optimize instruction fetching.

9.15 Cache
The level-1 code cache and the level-1 data cache are both 64 Kbytes, 2 way set
associative and a line size of 64 bytes. The data cache has two ports which can be used for
either read or write. This means that it can do two reads or two writes or one read and one
write in the same clock cycle. Each read port is 128 bits wide on K10, 64 bits on K8. The
write ports are 64 bits on both K8 and K10. This means that a 128-bit write operation
requires two macro-operations.

Each 64 byte line in the code cache line is split into 4 blocks of 16 bytes each. Each 64 byte
line in the data cache is split into 8 banks of 8 bytes each. The data cache cannot do two

 122

memory operations in the same clock cycle if they use the same bank, except for two reads
from the same cache line:

; Example 9.9. AMD cache bank conflicts
mov eax,[esi] ; Assume ESI is divisible by 20H
mov ebx,[esi+20h] ; Same cache bank as EAX. Delayed 1 clock
mov ecx,[esi+28h] ; Different cache bank

mov eax,[esi] ; Assume ESI is divisible by 20H
mov ebx,[esi+4h] ; Read from same cache line as EAX. No delay

mov [esi],eax ; Assume ESI is divisible by 20H
mov [esi+4h],ebx ; Write to same cache line as EAX. Delay

(See Hans de Vries: Understanding the detailed Architecture of AMD's 64 bit Core, Chip
Architect, Sept. 21, 2003. www.chip-architect.com. Dmitry Besedin: Platform Benchmarking
with RightMark Memory Analyzer, Part 1: AMD K7/K8 Platforms. www.digit-life.com.)

Operations with memory access are executed with the use three different units with each
their pipeline: (1) An Arithmetic Logic Unit (ALU) or one of the floating point units, (2) an
Address Generation Unit (AGU), (3) a Load Store Unit (LSU). The ALU is used for read-
modify and read-modify-write instructions, but not for instructions that only read or write. The
AGU and LSU are used for all memory instructions. The LSU is used twice for read-modify-
write instructions. While the ALU and AGU micro-operations can be executed out of order,
the LSU micro-operations are processed in order in most cases. The rules are as follows, as
far as I am informed:

1. Level-1 data cache hit reads are processed in order.

2. Level-1 data cache miss reads proceed in any order.

3. Writes must proceed in order.

4. A read can go before a preceding write to a different address.

5. A read depending on a prior write to the same address can proceed as soon as the
forwarded data is available.

6. No read or write can proceed until the addresses of all prior read and write
operations are known.

It is recommended to load or calculate the values of pointer and index registers as early as
possible in the code in order to prevent the delaying of subsequent memory operations.

The fact that memory operations must wait until the addresses of all prior memory
operations are known can cause false dependences, for example:

; Example 9.10. AMD memory operation delayed by prior memory operation
imul eax, ebx ; Multiplication takes 3 clocks
mov ecx, [esi+eax] ; Must wait for EAX
mov edx, [edi] ; Read must wait for above

This code can be improved by reading EDX before ECX so that the reading of EDX doesn't
have to wait for the slow multiplication.

There is a stall of one clock cycle for misaligned memory references if the data crosses an
8-bytes boundary. The misalignment also prevents store-to-load forwarding. Example:

; Example 9.11. AMD misaligned memory access

http://www.chip-architect.com/
http://www.digit-life.com/

 123

mov ds:[10001h],eax ; No penalty for misalignment
mov ds:[10005h],ebx ; 1 clock penalty when crossing 8-byte boundary
mov ecx,ds:[10005h] ; 9 clock penalty for store-to-load forwarding

Level-2 cache
The level-2 cache has a size of 512 Kbytes or more, 16 ways set-associative with a line size
of 64 bytes and a bus size of 16 bytes. Lines are evicted by a pseudo-LRU scheme.

Data streams can be prefetched automatically with positive or negative strides. Data are
prefetched only to the level-2 cache, not to the level-1 cache.

The level-2 cache includes bits for automatic error correction when used for data, but not
when used for code. The code is read-only and can therefore be reloaded from RAM in
case of parity errors. The bits that have been saved by not using error correction for code
are used instead for copying the information about instruction boundaries and branch
prediction from the level-1 cache.

Level-3 cache
The K10 has a level-3 cache of 2 MB. It is likely that versions with different level-3 cache
sizes will become available. The level-3 cache is shared between all cores, while each core
has its own level-1 and level-2 caches.

9.16 Bottlenecks in AMD
It is important, when optimizing a piece of code, to find the limiting factor that controls
execution speed. Tuning the wrong factor is unlikely to have any beneficial effect. In the
following paragraphs, I will explain each of the possible limiting factors in the AMD
microarchitecture.

Instruction fetch
The instruction fetch is limited to 16 bytes of code per clock cycle on K8 and earlier
processors. This can be a bottleneck when the rest of the pipeline can handle three
instructions per clock cycle. Instruction fetch is unlikely to be a bottleneck on K10.

The throughput for taken jumps is one jump per two clock cycles. Instruction fetch after a
jump is delayed even more if there is a 16-byte boundary in the first three instructions after
the jump. It is recommended to align the most critical subroutine entries and loop entries by
16 or at least make sure the critical jump targets are not near the end of an aligned 16-byte
block. The number of jumps and 16-byte boundaries in small loops should be kept as small
as possible. See above, page 121.

Out-of-order scheduling
The maximum reordering depth is 24 integer macro-operations plus 36 floating point macro-
operations. Memory operations cannot be scheduled out of order.

Execution units
The execution units have a much larger capacity than it is possible to utilize. It is alleged
that the nine execution units can execute nine micro-operations simultaneously, but it is
virtually impossible to verify this claim experimentally since the retirement is limited to three
macro-operations per clock cycle. All three integer pipelines can handle all integer
operations except multiplication. The integer execution units can therefore not be a
bottleneck except in code with an extraordinary high number of multiplications.

A throughput of 3 macro-operations per clock cycle can be obtained when no execution unit
receives more than one third of the macro-operations. For floating point code, it is difficult to
obtain a perfectly equal distribution of macro-operations between the three floating point

 124

units. Therefore, it is recommended to mix floating point instructions with integer
instructions.

The floating point scheduler does not distribute macro-operations optimally between the
three floating point execution units. A macro-operation may go to a unit with a long queue
while another unit is vacant. See page 116.

All floating point units are pipelined for a throughput of one macro-operation per clock cycle,
except for division and a few other complex instructions.

Mixed latencies
Mixing macro-operations with different latencies scheduled for the same floating point unit
can seriously prevent out-of-order execution. See page 117.

Dependence chains
Avoid long dependence chains and avoid memory intermediates in dependence chains. A
false dependence can be broken by writing to a register or by the following instructions on
the register with itself: XOR, SUB, SBB, PXOR, XORPS, XORPD. For example, XOR EAX,EAX,
PXOR XMM0,XMM0, but not XOR AX,AX, PANDN XMM0,XMM0, PSUBD XMM0,XMM0 or
compare instructions. Note that SBB has a dependence on the carry flag.

Accessing part of a register causes a false dependence on the rest of the register, see page
119. Accessing part of the flag register does not cause a false dependence, except in rare
cases, see page 120.

Jumps and branches
Jumps and branches have a throughput of one taken branch every two clock cycles. The
throughput is lower if there are 16-byte boundaries shortly after the jump targets. See page
121.

The branch prediction mechanism allows no more than three taken branches for every
aligned 16-byte block of code. Jumps and branches that always go the same way are
predicted very well if this rule is obeyed. See page 24.

Dynamic branch prediction is based on a history of only 8 bits. Furthermore, the pattern
recognition often fails for unknown reasons. Branches that always go the same way do not
pollute the branch history register.

Retirement
The retirement process is limited to 3 macro-operations per clock cycle. This is likely to be a
bottleneck if any instructions generate more than one macro-operation.

 125

10 Comparison of microarchitectures
The state-of-the-art microprocessors that have been investigated here represent different
microarchitecture kernels: the AMD, the Pentium 4 (NetBurst), the Pentium M, and the Intel
Core 2 kernel. I will now discuss the advantages and disadvantages of each of these
microarchitectures. I am not discussing differences in memory bandwidth because this
depends partly on external hardware and on cache sizes. Each of the four microprocessor
types is available in different variants with different cache sizes. The comparison of
microarchitectures is therefore mostly relevant to CPU-intensive applications and less
relevant to memory-intensive applications.

10.1 The AMD kernel
The AMD microarchitecture is somewhat simpler than the microarchitecture of Intel
processors. This has certain advantages because the processor spends less resources on
complicated logistics. It also has drawbacks in terms of suboptimal out-of-order scheduling.
The throughput of 3 macro-operations per clock cycle is obtained simply by having a 3-way
pipeline all the way through. The ability to move macro-operations from one of the three
pipelines to another is limited.

The execution units are less specialized than in Intel processors. All of the three integer
execution units can handle almost any integer operation, including even the most obscure
and seldom used instructions. Only the integer multiplication unit has been too expensive to
make in three copies. This generality makes the logistics simple at the cost of bigger
execution units.

The three floating point execution units are more specialized. Only the simplest operations
are supported by more than one of these units. The distribution of macro-operations
between the three floating point units is far from optimal. There is certainly room for
improvement here.

The floating point execution units also have a problem with mixing macro-operations with
different latencies. This problem is handled in a rather complicated and inefficient way by
blocking the dispatch of a macro-operation with a short latency if it can be predicted that it
would need the result bus simultaneously with a preceding macro-operation with a longer
latency. A simpler and more efficient solution would be to keep the result of a short-latency
macro-operation in the pipeline until the result bus is ready. This would solve the problem
that a macro-operation with a short latency can be postponed for a long time if the pipeline
is dominated by long-latency macro-operations, and it would get rid of the complicated logic
for predicting when the result bus will be vacant.

All execution units have fairly short latencies and are fully pipelined so that they can receive
a new macro-operation every clock cycle.

It is alleged that the nine execution units (three integer ALU's, three address generation
units, and three floating point units) can execute nine micro-operations in the same clock
cycle. Unfortunately, it is virtually impossible to verify this claim experimentally because the
retirement stage is limited to three macro-operations per clock cycle. In other words, the
AMD has ample execution resources which are never fully utilized. If the bottleneck in the
retirement stage were widened then it would be possible to execute more macro-operations
per clock cycle.

The AMD generates quite few macro-operations per instruction. Even read-modify and
read-modify-write instructions generate only one macro-operation which is split into micro-
operations only in the execute stage in the pipeline. This is similar to a fused micro-
operation in the PM and Core2 design. The AMD K8 design has no execution units bigger
than 64 bytes, so that 128-bit XMM instructions generate two macro-operations in the AMD

 126

K8. The subsequent AMD K10 processors have 128 bit units in the floating point pipeline to
handle vector instructions in a single macro-operation.

The AMD design has no strict limitation to the number of input dependencies on a single
macro-operation. Thus, instructions like ADC EAX,EBX, CMOVBE EAX,EBX, and MOV
[EAX+EBX],ECX are implemented with a single macro-operation. The same instructions
have to be split up into at least two micro-operations on Intel processors where a micro-
operation can have no more than two input dependencies, including the condition flags.

The throughput for instruction fetching has been increased from 16 to 32 bytes per clock
cycle on K10. There is still a lower throughput after taken jumps. Instruction fetching from
the level-2 cache is particularly slow.

Instruction decoding seems to be more efficient than in Intel processors. It can decode at
least three instructions per clock cycle.

Branch prediction is good for branches that always go the same way because branch
prediction information is stored both in the level-1 and the level-2 cache. But the mechanism
for predicting regular branch patterns has a lower prediction rate than on Intel processors.

The cache system can make two memory reads per clock cycle, while Intel processors can
do only one read per clock cycle.

10.2 The Pentium 4 kernel
The Intel Pentium 4 (NetBurst) kernel has been designed with a very one-sided focus on
clock speed. Leading the clock frequency race surely has advantages in terms of marketing
and prestige, but it also has considerable costs in terms of the design considerations that
are needed in order to make the high clock frequency possible. A long pipeline is needed
because the circuits can do less work per pipeline stage. Some pipeline stages in the P4
microarchitecture are used simply for transporting data from one part of the chip to another.
Physical distances really matter at these high frequencies. The long pipeline means a high
branch misprediction penalty.

Each of the execution units is kept as small as possible. Not only because physical
distances matter but also because heat dissipation is a limiting factor. The smaller units are
more specialized and can handle fewer different operations. This means that all but the
simplest instructions require more than one µop, and some instructions require many µops.

The level-1 data cache is also quite small (8 or 16 kb), but access to the level-2 cache is
fast.

The P4 doesn't have a code cache as other processors do, but a trace cache. The trace
cache runs at half clock frequency, possibly because of its size. The trace cache doesn't
store raw code but decoded µops. These µops are very similar to RISC instructions so that
the kernel can use RISC technology. Decoding instructions into RISC-like µops before they
are cached is a logical thing to do when decoding is a bottleneck. The P4 surely performs
better in some cases where instruction decoding or predecoding is a bottleneck on other
processors.

But the trace cache is not as advantageous as it first looks. For example, a PUSH or POP
instruction takes only a single byte in a code cache, but 16 bytes in the P4E trace cache.
This means that it can cache less code on the same chip area. Furthermore, the same code
may appear in more than one trace in the trace cache. The consequence is less code in the
cache when cache size is limited by physical factors. The 32-bit P4 has some data
compression in the trace cache, but this goes against the idea of making decoding simple
and efficient. Arranging code into traces eliminates the fetching delay when jumping to

 127

another part of the code, but there is still a delay when jumping to a different trace, and this
delay is higher because the trace cache runs at half clock speed. Whether to store the same
code in multiple traces or not is a tradeoff between eliminating jumps and putting more code
into the trace cache.

Anyway, I seriously doubt that the trace cache makes the design simpler. I don't know how it
keeps track of the traces, mapping physical addresses to multiple trace cache addresses,
deciding whether to jump to another trace or extend the existing trace on a branch
instruction, and deciding when to rearrange traces. This looks like a logistical nightmare to
me.

The instruction decoder can only handle one instruction per clock cycle, while other designs
can decode three or more instructions per clock cycle. Obviously, the decoder has got a low
priority because it is used only when building new traces from the level-2 cache.

The P4 has two execution ports for ALU and other calculations (port 0 and 1) and two
additional ports for memory operations and address calculation (port 2 and 3). Each
execution port has one or more execution units. It is not possible to dispatch two µops
simultaneously to two different execution units if they are using the same execution port.
These ports are therefore a bottleneck. The execution units are not optimally distributed
between port 0 and 1. All floating point and SIMD (vector) operations, except simple moves,
go through port 1. This makes port 1 a serious bottleneck in floating point and SIMD code.

Two small integer ALU's run at double clock speed. The 32-bit P4 can do staggered
additions with a virtual latency of only a half clock cycle. The latency for the condition flags
is longer. The 64-bit P4E still uses double-speed ALU's, but with a latency of a full clock
cycle. The throughput is four µops per clock for those instructions that can be handled by
both ALU's. The double speed ALU's are specialized to handle only the most common
operations such as move and addition on general purpose registers.

The other execution units have longer latencies, sometimes much longer. The most
ridiculous example is a 7 clock latency for a floating point register-to-register move on P4E.
There is also an additional latency of one clock cycle when a result from one execution unit
is needed as input in another execution unit.

A 128-bit XMM instruction is handled by a single µop, but the execution units can handle
only 64 bits at a time so the throughput is only 64 bits per clock cycle. Only memory reads
have a throughput of 128 bits per clock cycle. This makes the P4/P4E an efficient
microprocessor for memory-intensive applications that can use 128-bit operands.

The branch prediction algorithm is reasonably good, but the misprediction penalty is
unusually high for two reasons. The first reason is obviously that the pipeline is long (20 or
more stages). The second reason is that bogus µops in a mispredicted branch are not
discarded before they retire. A misprediction typically involves 45 µops. If these µops are
divisions or other time-consuming operations then the misprediction can be extremely
costly. Other microprocessors can discard µops as soon as the misprediction is detected so
that they don't use execution resources unnecessarily.

The same problem applies to bogus reads of a store-forwarded memory operand that is not
ready. The P4 will keep re-playing the read, as well as subsequent µops that depend on it,
until the memory operand is ready. This can waste a lot of execution resources in a read-
after-write memory dependence. This typically occurs when parameters are transferred on
the stack to a subroutine. There is also an excessive replaying of µops after cache misses
and other events. The amount of resources that are wasted on executing bogus µops is so
high that it is a serious performance problem.

The retirement is limited to slightly less than 3 µops per clock cycle.

 128

10.3 The Pentium M kernel
The PM is a modification of the old Pentium Pro kernel with the main focus on saving
power. A lot of effort has been put into turning off parts of the execution units and buses
when they are not used. The lowered power consumption has a beneficial side effect. A low
power consumption means that the clock frequency can be increased without overheating
the chip.

Instruction decoding is limited by the 4-1-1 rule (page 57). Software must be tuned
specifically to the 4-1-1 rule in order to optimize instruction decoding. Unfortunately, the
4-1-1 pattern is broken by instruction fetch boundaries, which are difficult to predict for the
programmer or compiler maker. This problem reduces the instruction fetch rate to less than
16 bytes per clock cycle and the decode rate to less than three instructions per clock cycle
(page 57). Instruction fetch and decoding is definitely a weak link in the PM design.

The execution units are clustered around five execution ports in a design very similar to the
P4. Port 0 and 1 are for ALU and other calculations, while port 2, 3 and 4 are for memory
operations and address calculation. The execution units are more evenly distributed
between port 0 and 1, and many µops can go to any of these two ports. This makes it easier
to keep both ports busy than in the P4 design.

SIMD integer instructions are quite efficient with an ALU on each of the two execution ports
and a latency of only one clock cycle. Floating point latencies are also quite low.

The PM generates fewer µops per instruction than the P4. While both designs have a
throughput of 3 µops per clock, the PM gets more instructions executed per clock cycle
because of the lower number of µops. The low number of µops is partially due to µop fusion
(page 59) and a dedicated adder for the stack pointer (page 61). Unfortunately, the µop
fusion mechanism doesn't work for XMM registers. This makes the PM more efficient for
MMX registers and floating point registers than for XMM registers.

The PM has a limitation of three register reads per clock cycle from the permanent register
file. This can very well be a bottleneck.

The PM has an advanced branch prediction mechanism. The loop counter is something that
we have been wishing for several years. But this doesn't make up for the very small branch
target buffer of probably only 128 entries. The improved ability to predict indirect jumps is
probably what has made it necessary to reduce the size of the BTB.

The PM doesn't support the 64-bit instruction set.

The throughput of the retirement stage is exactly as in P4. While both designs are limited to
3 µops per clock cycle, the PM has fewer µops per instruction and shorter latencies in the
execution units. This makes the PM so efficient that it may run CPU-intensive code faster
than the P4 even though the latter has a 50% higher clock frequency.

10.4 Intel Core 2 microarchitecture
This new design takes the successful philosophy of the PM even further with a high focus
on saving power. The low power consumption makes it possible to increase the clock
frequency.

The pipeline and execution units are extended to allow a throughput of four µops per clock
cycle. The throughput is further increased by issuing fewer µops per instruction and by
extending the data busses and execution units to 128 bits. Cache and memory bandwidth
have also been improved.

 129

The Core2 has so many execution units and execution ports that the execution stage will
rarely be a bottleneck. Most execution units and internal data busses have been extended
to 128 bits unlike all previous x86 processors from Intel and AMD, which have only 64-bit
execution units.

A few weak spots in the design remain, however. I want to point out three areas in the
design that do not match the performance of the rest of the pipeline, and these weak spots
are likely to be bottlenecks:

1. Instruction predecoding. The mechanism of instruction fetch and predecoding has
been improved, but the bandwidth is still limited to 16 bytes of code per clock cycle.
This is a very likely bottleneck in CPU-intensive code.

2. Register read ports. The design can read no more than two or three registers from
the permanent register file per clock cycle. This is likely to be insufficient in many
cases.

3. Branch history pattern table. The branch history pattern table is so small that it may
compromise the otherwise quite advanced branch prediction mechanism.

4. Read ports. The Core2 can read one memory operand per clock cycle, where AMD
processors can read two. The read port cannot always match the high throughput of
the execution units.

The design can be improved further if the weaknesses mentioned here are dealt with. The
bottleneck of instruction predecoding can be eliminated by marking instruction boundaries in
the code cache. The AMD processors do this, and the old Pentium MMX did as well. The
only reason I can see for not marking instruction boundaries in the code cache is that it will
increase the size of the code cache by one bit per byte. A possible compromise would be to
mark only the first instruction boundary in, say, each 16-bytes block. This would cost only 4
bits per 16 bytes of cache size, yet it would make it possible to predecode multiple 16-bytes
blocks of code in parallel.

10.5 Conclusion
The AMD, P4 and PM designs can all execute instructions out of order with a maximum
throughput of 3 µops per clock cycle. The Core2 can do 4 µops per clock cycle.

The P4 (NetBurst) design has a higher clock frequency which means more µops per
second. But each instruction generates more µops on P4 than on other processors, which
means fewer instructions per clock cycle. A further disadvantage of the high clock frequency
is a long pipeline and thus a high branch misprediction penalty. The NetBurst micro-
architecture has so many inherent performance problems that, apparently, Intel has left it for
good.

The PM, Core2 and the AMD designs all use the opposite strategy of a lower clock
frequency but fewer µops per instruction. This strategy appears to give the best
performance for CPU-intensive applications. The P4 has longer latencies than other
processors for many instructions. This makes it inferior for code with long dependence
chains.

All these designs have a RISC-like execution core that works on simple µops rather than on
complex instructions. The P4 has pushed the RISC philosophy even further by caching
µops rather than instructions. The result is not convincing since it reduces the amount of
information per cache area and the management of the trace cache has become no less
time consuming than a CISC decoder.

 130

For many years, the RISC philosophy has been considered the best way to high
performance. The advent of the PM and the Intel Core2 microarchitecture indicates a new
trend away from RISC and back to the CISC principle. The RISC-like design of the P4 with
its very long pipeline and long execution latencies was not convincing, and the trace cache
appears to have been a dead end street. The advantages of going back to CISC design are
threefold:

1. The compact CISC code gives better utilization of the limited code cache area.

2. Fewer µops per instruction gives higher bandwidth in the pipeline.

3. Fewer µops per instruction gives lower power consumption.

The main disadvantage of a CISC design is that instruction decoding becomes a bottleneck.
The AMD processor has a higher decoding bandwidth than the Intel design because of the
technique of storing predecode information in the code cache. The Intel design is still limited
to 16 bytes of code per clock cycle, which is insufficient in many cases.

The increased focus on power-saving features in the PM and Core2 designs makes it
possible to use a relatively high clock frequency despite a design that does more work per
pipeline stage than the P4.

The AMD also uses a CISC design with few µops per clock cycle. The design is kept as
simple as possible in order to reduce the necessary amount of logistics overhead. This,
however, reduces the out-of-order capabilities and the optimal utilization of execution units.

The Intel Core2 and AMD K10 processors have full 128-bit execution units. The earlier
processors use a 64-bit unit twice when computing a 128-bit result. It is therefore not
possible to take full advantage of the 128-bit XMM instructions in these processors.

The throughput of 3 µops per clock cycle in both AMD, P4 and PM is increased to 4 µops in
the Core2 design, but I do not expect this number to increase much further in the future
because the advantage of a higher throughput cannot be fully utilized unless the code has a
high degree of inherent parallelism.

Instead, the trend goes towards multiple execution cores. Unfortunately, we need multi-
threaded programs to take full advantage of multiple cores in single-user systems.
Calculation tasks that cannot be divided into multiple threads cannot take much advantage
of multiple cores or multiple processors.

The newest Intel and AMD processors have multiple cores. A half-way solution also exists
in the P4 with the so-called hyper-threading technology. The hyper-threading P4 processor
has two logical processors sharing the same execution core. The advantage of this is
limited if the two threads compete for the same execution units, but hyper-threading can be
quite advantageous if the performance is limited by something else, such as memory
access. It has been announced that Intel will re-introduce hyper-threading in future
processors.

The extension of the 32 bit architecture to 64 bits has been a logical and necessary thing to
do. Intel came before AMD with their advanced Itanium RISC architecture, but it lacks the
backwards compatibility that the market demands. The AMD 64-bit architecture, which has
doubled the number of registers and still retained backwards compatibility, has turned out to
be a commercial success which Intel had to copy. Almost all processors produced today
support the x64 instruction set.

Table 10.1 below compares execution latencies for various operations on the three designs.
A table comparing cache sizes etc. is provided in manual 4: "Instruction tables".

 131

Execution latencies, typical AMD P4E PM, mod.
13

Core2
45 nm

integer addition 1 1 1 1
integer multiplication 3 10 4 3
integer division, 32 bits 40 79 39 23
packed integer move 2 7 1 1
packed integer addition 2 2 1 1
packed integer multiplication 3 8 3 3
floating point move 2 7 1 1-3
floating point addition 4 6 3 3
floating point division 20 45 32 21
packed floating point addition 4 5 3 3
packed floating point multiplication 4 7 5 5
Table 10.1. Comparison of instruction latencies

10.6 Future trends
The high clock frequency in the P4 design turned out to be too costly in terms of energy
consumption and chip heating. This prompted a change of focus away from the gigaherz
race. Since then, there has been an increasing focus on energy efficiency, and this factor
will become no less important in the future.

The speed and computing power of execution units is growing faster than the speed of
memory access. We can therefore expect an intense focus on improving caching and
memory bandwidth in the future. Three-level caching and wider data paths will be common.

Branch misprediction is very costly in present microprocessors. We will see more advanced
multilevel branch prediction algorithms, bigger branch target buffers and history tables, as
well as speculative execution of multiple branches simultaneously in future processors in
order to reduce the cost of mispredictions.

There is a remarkable convergence between the Intel and AMD microarchitectures thanks
to a patent sharing agreement between the two companies. Intel's stack engine and the
mechanism for predicting indirect branches have been copied by AMD. We can also expect
Intel to some day match AMD's 32-bytes instruction fetch rate and the memory read rate of
two operands per clock cycle. It is more uncertain whether AMD will match Intel's 4-
instruction throughput.

There is unfortunately less convergence on the instruction set extensions. Intel's SSE4.1
and SSE4.2 instruction sets are very different from AMD's SSE4.A and SSE5, and the
intersection between these two sets is quite small. Intel has never copied AMD's 3DNow
instruction set which is now obsolete, but they have copied the successful x64 extension
from AMD. AMD has traditionally copied all Intel instructions, but there is no indication of if
or when they will copy SSE4.1 and SSE4.2. AMD has announced an extended instruction
format to allow instructions with three or four operands in their future SSE5 instruction set.
Intel has announced a very different instruction format named AVX which also supports
three or four operands. The AVX format is more flexible, compact and expandable than the
SSE5 format. There can be no doubt that AMD will need to support the AVX format because
it is needed for the new YMM vector registers and for extending existing instructions to the
non-destructive three operand format. The AMD SSE5 instruction set has no future unless it
is completely redesigned to be compatible with the AVX encoding style.

The transition to three- and four-operand instructions will probably be easier for AMD than
for Intel because the Intel Core2 microarchitecture does not allow a µop to have more than
two input dependencies, while AMD has no such limitation.

 132

The announced AMD and Intel instruction sets now have different codes for the same, or
very similar, instructions. This is the backside of free competition and commercial secrecy.
The market demands compatibility, and it is unlikely that programmers will use the
incompatible instructions to any significant extent.

The amount of parallelism in CPU pipelines will not grow much beyond the four µops per
clock cycle of the Core 2, because dependence chains in the software is likely to prevent
further parallelism. Instead, we will se an increasing number of cores. Two cores has now
become the norm for desktop computers, and four or more cores is likely to become
common in the future. This puts a high demand on software developers to make
multithreaded applications.

It has been announced that the 128-bit XMM registers will be expanded to 256 bits (YMM)
in Intel processors announced for 2010. It has also been hinted that further extensions to
512 or 1024 bits can be expected in the future, and the XSAVE and XRESTOR instructions
are prepared for such future extensions. AMD will no doubt follow the same trend.

With the announced extensions, the x86 instruction set has more than a thousand logically
different instructions, including specialized instructions for text processing, graphics,
cryptography, CRC check, and complex numbers. The instruction set is likely to be
increased with every new processor generation, at least for marketing reasons. We may see
more application-specific instructions, such as Galois field algebra vector instructions for
encryption purposes.

However, the ever-increasing number of application-specific instructions is not optimal from
a technical point of view because it increases the die area of the execution units whereby
the clock frequency is limited. A more viable solution might be user-definable instructions.
We are already seeing FPGA chips that combine a dedicated microprocessor core with
programmable logic. A similar technology may be implemented in PC processors as well.
Such a processor will have logical arrays similar to FPGAs that can be programmed in a
hardware definition language to implement application-specific microprocessor instructions.
Each processor core will have a cache for the hardware definition code in addition to the
code cache and the data cache. The cost of task switching will increase, of course, but it will
be easier to reduce the number of task switches when the number of cores is increased.

 133

11 Literature
The present manual is part three of a series of five manuals available from
www.agner.org/optimize as mentioned in the introduction on page 3.

Other relevant literature on microarchitecture:

• IA-32 Intel Architecture Optimization Reference Manual. developer.intel.com.

• Software Optimization Guide for AMD Family 10h Processors. www.amd.com.

• J. L. Hennessy and D. A. Patterson: Computer Architecture: A Quantitative
Approach, 3'rd ed. 2002.

• www.xbitlabs.com

• www.arstechnica.com

• www.realworldtech.com

• www.aceshardware.com

• www.digit-life.com

http://www.agner.org/optimize
http://developer.intel.com/
http://www.amd.com/
http://www.xbitlabs.com/
http://www.arstechnica.com/
http://www.realworldtech.com/
http://www.aceshardware.com/
http://www.digit-life.com/

	Introduction
	About this manual
	Microprocessor versions covered by this manual

	Out-of-order execution (All processors except P1, PMMX)
	Instructions are split into µops
	Register renaming

	Branch prediction (all processors)
	Prediction methods for conditional jumps
	Branch prediction in P1
	Branch prediction in PMMX, PPro, P2, and P3
	Branch prediction in P4 and P4E
	Branch prediction in PM and Core2
	Branch prediction in AMD
	Indirect jumps on older processors
	Returns (all processors except P1)
	Static prediction
	Close jumps

	Pentium 1 and Pentium MMX pipeline
	Pairing integer instructions
	Address generation interlock
	Splitting complex instructions into simpler ones
	Prefixes
	Scheduling floating point code

	Pentium Pro, II and III pipeline
	The pipeline in PPro, P2 and P3
	Instruction fetch
	Instruction decoding
	Register renaming
	ROB read
	Out of order execution
	Retirement
	Partial register stalls
	Store forwarding stalls
	Bottlenecks in PPro, P2, P3

	Pentium M pipeline
	The pipeline in PM
	The pipeline in Core Solo and Duo
	Instruction fetch
	Instruction decoding
	Loop buffer
	Micro-op fusion
	Stack engine
	Register renaming
	Register read stalls
	Execution units
	Execution units that are connected to both port 0 and 1
	Retirement
	Partial register access
	Store forwarding stalls
	Bottlenecks in PM

	Core 2 pipeline
	Pipeline
	Instruction fetch and predecoding
	Instruction decoding
	Micro-op fusion
	Macro-op fusion
	Stack engine
	Register renaming
	Register read stalls
	Execution units
	Retirement
	Partial register access
	Store forwarding stalls
	Cache and memory access
	Breaking dependence chains
	Bottlenecks in Core2

	Pentium 4 (NetBurst) pipeline
	Data cache
	Trace cache
	Instruction decoding
	Execution units
	Do the floating point and MMX units run at half speed?
	Transfer of data between execution units
	Retirement
	Partial registers and partial flags
	Store forwarding stalls
	Memory intermediates in dependence chains
	Breaking dependence chains
	Choosing the optimal instructions
	Bottlenecks in P4 and P4E

	AMD pipeline
	The pipeline in AMD processors
	Instruction fetch
	Predecoding and instruction length decoding
	Single, double and vector path instructions
	Stack engine
	Integer execution pipes
	Floating point execution pipes
	Mixing instructions with different latency
	64 bit versus 128 bit instructions
	Data delay between differently typed instructions
	Partial register access
	Partial flag access
	Store forwarding stalls
	Loops
	Cache
	Bottlenecks in AMD

	Comparison of microarchitectures
	The AMD kernel
	The Pentium 4 kernel
	The Pentium M kernel
	Intel Core 2 microarchitecture
	Conclusion
	Future trends

	Literature

