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This paper presents an analysis of a simple tree-
structured disjoint set Union-Find algorithm, and shows
that this algorithm requires between n and 2n steps on
the average to execute a sequence of n Union and Find
instructions, assuming that each pair of existing classes
is equally likely to be merged by a Union instruction.

Union-Find algorithms are useful in the solution to
a number of problems which require the construction
of equivalence classes of a set of elements. The common
parts of algorithms for constructing spanning trees of
graphs, processing EQUIVALENCE statements, and
determining the equivalence of finite automata are es
sentially the operations of combining two equivalence
classes into one new equivalence class, and of finding
the equivalence class to which an element belongs.

A number of algorithms for executing Union-Find
instructions on a RAM are presented in ref. [1]. The
fastest of these use tree structures by representing each
equivalence class by a tree whose vertices represent the
elements of the equivalence class. The simplest such
tree-structured algorithm, which is the subject of the
following analysis, executes the instruction Union (A,
B) by making the root of the tree representing the equiv
alence class B a son of the root of the tree representing
equivalence class A. The instruction Find (x) is executed
by tracing up the tree from the vertex representing x un

‘ til the root of the tree representing the class containing
x is reached, and then returning the name of the equiva
lence class stored there. This algorithm requires at worst

* This research was supported by the Fannie and John Hertz
Foundation and by the National Science Foundation under
research grant no. DCR74-1 2997 and research grant no. MCS76-
14294.

e(s2)steps to execute s instructions on s elements [I],
and may in fact require this many, since a chain of
length e(s) can be created with s/2 union instructions,
and s/2 subsequent finds can cost e(s) each.

Two improvements to this algorithm are “weighted
unions”, which make the root of the tree representing
the smaller of the two classes being merged a son of the
root of the larger, and “collapsing finds”, which make
the vertices encountered on the way up to the root sons
of the root. Either of these two improvements reduces
the worst-case running time to e[s in(s)] steps forsin
structions on s elements [1], and Tarjan [3] has shown
that using both improvements produces a e(s . a(s)) run-
fling time where a(s) is related to a functional inverse of
Ackermann’s function. As a corollary of the present
analysis, all these improved algorithms also have, in our
model of merging probabilities, an expected running
time proportional to the number of instructions execu
ted.

The algorithm analyzed in this paper has also been
analyzed by Yao [4] for two other models of probabili
ties. While our model is inappropriate for most known
applications, it provides a further illustration of the ex
treme dependence of the expected running time of this
algorithm on the probability distribution of the input
instruction sequences.

The algorithm studied here is as follows. There are
s elements in the universal set. The names of elements
and the names of equivalence classes are integers in ‘the
range 1 through s. Initially, each element is alone in an
equivalence class. The array FATHER (1 :s) is used to
store the name of each element’s father in the tree. The
convention of the algorithm is that if a vertex is its own
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father, then that vertex is the root of a tree represent
ing an equivalence class (whose name is the name of the
root).

Initialization: for i — 1 to s do FATHERQ) —

Find(i):
while FATHER(J) *f do j -

FATHER(f);
returnj;

Union(i,j) FATHER(J) ÷- I;

For the purposes of this analysis, we take the cost
of executing a Union instruction to be 1, and the cost
of executing a Find to be the number of times the
while test is made.

The average time required by this algorithm will be
computed by averaging over all legal sequences of n in.
structions. Such sequences of instructions are of the
form

where for each k, 1 k n, ‘k is either
(a) Find(i) for some i, I i s, or
(b) Union(i, I) for some i and!, 1 i * j s, sub

ject to the restriction that no instruction I, I 1 <k,
is of the form Union(x, i) or Union(x, j).

The following analysis assumes that the probability
that two equivalence classes appear in a Union instruc
tion is independent of their sizes. This assumption does
not apply to a number of situations in which the use of
the Union-Find instructions is primarily to merge the
equivalence classes containing two elements chosen in
dependently with uniform probability from s. In such
applications the probability that two classes are merged
is proportional to the product of their sizes.

Lemma: The average cost of executing a find after u
unions have been executed is 1 + H5

— H3.
Proof: I.et D(k, s) denote the average depth of the for
est of trees (in the universe of s elements) after k unions
have been executed, where roots of trees have depth 0.
Then D(u, s)+1 is the average cost of executing a find
after u unions have executed.

After k unions have been performed, there are s — k
trees in the forest. The average size of these trees is
s/(s — k) elements, so the next union will increase the
average depth by

(us) [s/(s — k)] = 1/(s —k).

Therefore,

D(k+ l,s)=D(k,s)+ l/(s— k),

and since D(O, s) = 0,

D(u,s) l/s+...+l/(s—u+ l)=H5—H5_. o

Let A(u, n, s) be the average cost of all sequences of
n instructions with u unions over the universe of s ele
ments, and let T(n, s) denote the average cost of all se
quences of n instructions over the universe of s ele
ments.

Theorem:nA(u,n,s)2n forallu,n,andssuch
that0usl andun.
Proof: The first inequality follows immediately from
the fact that each instruction has at least unit cost.
For the second inequality, observe that in sequences
of n instructions with u unions, the averaging number
of finds between the jth and! + 1st unions is just the
total number of finds divided by the number of inter
vals into which the unions decompose the instruction
sequence, or (n u)/(u + 1). Thus the cost due to finds
and the constant cost of u due to unions sum to

U

A(u,n,s)=÷D(l+H5—H51)÷u

2n—u— u)(s_u)[HH ]u+1 s s—u—i

which clearly indicates the inequality of the theorem.

Corollary: n T(n, s) 2n for all n and s.
Proof: T(n, s) is the average of A(u, n, s), averaged over
all values of u, 0 u min{n, S — i}, and so is bounded
by the bounds on the size of A(u, n, s).

We have demonstrated that in one model of proba
bilities, the simplest tree structured Union-Find algo
rithm has an expected running time proportional to
the number of instructions executed. An immediate
consequence of this is that in this model the improved
Union-Find algorithms with weighted unions and col
lapsing finds also have linear expected times.

We thank the referees for suggesting a substantial
simplification in the proof of the theorem.
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