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�� Pattern matching and automata

This chapter describes several methods of word pattern matching that are based on the use of automata�
Pattern matching �in words� is the problem of locating occurrences of a pattern in a text �le� The

�le is just a string of symbols� but the pattern can be speci�ed in various ways� Here� we only consider
patterns described by regular expressions or weaker mechanisms�

Solutions to the problem are basic parts of many text processing tools� such as editors� parsers�
and information retrieval systems� They are also widely used in the analysis of biological sequences� The
algorithms that solve the problem classically decompose in two steps� a preprocessing phase and a search
phase� When the text �le is considered to be dynamic �as in editing applications�� the preprocessing is
applied to the pattern �see Sections �� �� and ��� This leads a posteriori to a good solution regarding the
e�ciency of the algorithms of this chapter� When the text �le is static �if it is a dictionary� for example�
the preprocessing applied to the text builds an index that can later support e�ciently several series of
queries �see Section 	��

We present solutions in which the search phase is based on automata as opposed to solutions based
on combinatorial properties of words� Thus� the algorithms perform on
line searches with a bu
er on
the text that does not need to store more than one letter at a time� The solutions are adequate for
processing sequential
access �les or streams of symbols�

The main algorithms of this chapter solve special instances of the determinization or minimization
problems of automata� Basically� given an automaton that recognizes the language X on the alphabet
A� algorithms build a deterministic� and sometimes minimal� automaton for the language A�X� which
is applied afterwards to search e�ciently for words of X�

The time complexity of algorithms is given as a function of the input� and is typically linear in the
length of the input� This takes into account the set of letters actually occurring in the input� But the
running time may depend on the output as well� So� a careful statement of each problem is necessary�
to avoid for example quadratic
size outputs that would obviously imply quadratic
time algorithms�

The complexity of algorithms is analyzed in a model of a machine in which the basic operation on
letters is comparison in the form less
equal
greater� The implicit ordering on the alphabet is exploited in
several algorithms� The assumption on the model makes it possible to process words over a potentially
unbounded alphabet� Some algorithms for the simplest pattern
matching problem �searching for only
one word� operates in a weaker model �comparison in the form equal
unequal�� We also mention how the
running times of most algorithms are a
ected when branchings in automata are performed by looking
up a transition table �see Section ��� This is valid if the alphabet is known in advance and if the
letters can be assimilated to indices on a table� Otherwise� a straightforward simulation implies that
the running times are multiplied by O�log card�A��� while in the comparison model the running times
of some algorithms are independent of the alphabet�

The regular
expression
matching problem �Section �� is when the pattern is a general regular ex

pression� The standard solution is certainly by Thompson ������� The mechanism is one of the basic
features of the UNIX operating system and of its tools�

When the language described by the pattern reduces to a �nite set of words �Section ��� called a
dictionary� the pattern
matching algorithm runs in linear time �on a �xed alphabet� instead of quadratic
time for the general solution� Moreover� when the pattern is only one word �Section ��� the same running
time holds� independently of the alphabet�

The su�x automata presented in Section 	 serve as indexes� They provide a solution to the pattern

matching instance where the searched text has to be preprocessed� The main point of the section is
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the linear
time construction of su�x automata �on a �xed alphabet�� which results partially from their
linear size�

The e�ciency of pattern
matching algorithms based on automata strongly relies on particular rep

resentations of these automata� This is why a review of several techniques is given in Section �� The
regular
expression
matching problem� the dictionary
matching problem� and the string
matching prob

lem are treated respectively in Sections �� �� and �� Section 	 deals with su�x automata and their
applications�

�� Notations

This section is devoted to a review of the material used in this chapter� alphabet� words� languages�
regular expressions� �nite automata� algorithms for matching patterns�

��� Alphabet and words

Let A be a �nite set� called the alphabet� Its elements are called letters� and� for convenience� we denote
them by a� b� c� and so on� Furthermore� we assume that there is an ordering on the alphabet�

A word is a �nite
length sequence of letters� The length of a word u is denoted by juj� and its j
th
letter by uj � The set of all words is denoted by A�� the empty word by �� and A� stands for A�nf�g�

The product of two words u and v� denoted by u �v or uv� is the word obtained by writing sequentially
the letters of u then the letters of v� Given a word u� the product of k words identical with u is denoted
by uk� setting u� � �� Denoted respectively by uw�� and v��u are the words v and w when u � vw�

A word v is said to be a factor of a word u if u � u�vu�� for some words u� and u��� it is a proper
factor of u if v �� u� a pre�x of u if u� � �� and a su�x of u if u�� � ��

��� Languages

A language is any subset of A�� The product of two languages U and V � denoted by U � V or UV � is
the language fuv j �u� v� � U � V g� Denoted by Uk is the set of words obtained by making products
of k words of U � The star of U � denoted by U�� is the language

S
k��U

k� By convention� the order
of decreasing precedence for language operations in expressions denoting languages is star or power�
product� union� By misuse� a language reduced to only one word u may be denoted by u itself if no
confusion arises �with further notations��

The sets of pre�xes� of factors� and of su�xes of a language U are denoted respectively by Pref �U ��
Fact�U �� and Su� �U �� If U is �nite� jU j stands for Pu�U juj �therefore� note that card�A� � jAj��

The right context of a word u according to a language W is the language fu��w j w � Wg� The
equivalence generated over A� by the relations

u��W � v��W� u� v � A�

is denoted by �W � it is the right syntactic congruence associated with the language W �

��� Regular expressions

Regular expressions and the languages they describe� the regular languages� are de�ned inductively as
follows�

� �� �� and a are regular expressions and describes respectively � �the empty set�� f�g� and fag� for
each a � A�

� if u and v are regular expressions describing respectively the regular languages U and V � then u�v�
u � v� and u� are regular expressions describing respectively the regular languages U � V � U � V � and
U��
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By convention� the order of decreasing precedence for operations in regular expressions is star ����
product ���� sum ���� The dot � is often omitted� Parenthesizing can be used to change the precedence
order of operators�

The language described by a regular expression u is denoted by Lang �u�� The length juj of a regular
expression u is the length of u reckoned on the alphabet A � f������ �g �parentheses and product
operator � are not reckoned��

��� Finite automata

A ��nite� automaton �with one initial state� is given by a �nite set Q� whose elements are called states�
an initial state i� a subset T � Q of terminal states� and a set E � Q�A �Q of edges�

An edge �p� a� q� of the automaton �Q� i� T�E� is an outgoing edge for state p and an ingoing edge for
state q� state p is the source of this edge� letter a its label� and state q its target� The number of edges
outgoing a state p is called the �outgoing� degree of p� We say that there is a path labeled by u from
state p to state q if there is a �nite sequence �rj��� aj� rj���j�n of edges such that n � juj� aj � uj for
each j � f�� � � � � ng� r� � p and rn � q� One agrees to de�ne a unique path labeled by � from each state
p to itself�

A word u is recognized by the automaton A � �Q� i� T�E� if there exists a path labeled by u from
i to some state in T � The set of all words recognized by A is denoted by Lang�A�� A language X is
recognizable if there exists an automaton A such that X � Lang �A��

As an example� the automaton depicted in Figure ��� recognizes the language fa� bg�abaaab� Its
initial state is �� and its only terminal state is ��

� � � � 
 � �
a b a a a b

b

a

b b

b

a

b

a

Fig� ���� An automaton recognizing the language fa�bg�abaaab�

The automaton �Q� i� T�E� is deterministic if for each �p� a� � Q � A there is at most one state q
such that �p� a� q� � E� It is complete if for each �p� a� � Q � A there is at least one state q such that
�p� a� q� � E� It is normalized if card�T � � �� the initial state has no ingoing edge� and the terminal state
has no outgoing edge� It is minimal if it is deterministic and if each deterministic automaton recognizing
the same languagemaps onto it� it has the minimalnumber of states� The minimal automaton recognizing
the language U is denoted by M�U �� It can be de�ned with the help of right contexts by���

u��U j u � A�
�
�
�
U
�
�
�
u��U j u � U

�
��

�u��U� a� �ua���U � j u � A�� a � A
��

In case A � �Q� i� T�E� is a deterministic automaton� it is convenient to consider the transition
function ��Q�A	 Q of A de�ned for each �p� a� � Q�A such that there is an outgoing edge labeled
by a for p by

��p� a� � q 
� �p� a� q� � E

�notice that � is a partial function�� Equivalently� the quadruple �Q� i� T� �� denotes the automaton A�
In a natural way� the transition function extends to a function mapping from Q � A� to Q and also
denoted by � setting
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��p� u� �

���
�	
p� if u � ��
����p� a�� v�� if ��p� a� is de�ned and u � av

for some �a� v� � A� A��
unde�ned� otherwise�

for each �p� u� � Q� A��
In algorithms that manipulate automata� we constantly use the function State�Creation described

in Figure ��� �� stands for the union of sets�� This avoids going into details of the implementation of
automata that is precisely the subject of Section ��

State�Creation
� chose a state q out of Q
� Q� Q� fqg
� return q

Fig� ���� Creation of a new state and adjunction to the set of states Q�

��	 Algorithms for matching patterns

The pattern matching problem is to search and locate occurrences of patterns in words �or textual data�
less formally speaking�� A pattern represents a language and is described either by a word� by a �nite
set of words� or more generally� by a regular expression� We do not consider patterns described by other
mechanisms�

Let y be the searched word� An occurrence in y of a pattern represented by the language X is a triple
�u� x� v� where u� v � A�� x � X� and such that y � uxv� The position of the occurrence �u� x� v� of x in
y is the length juj� it is sometimes more convenient to consider the end�position of the same occurrence�
which is de�ned as the length juxj� Observe that searching y for words in a language X is equivalent to
search for pre�xes of y that belong to the language A�X� the language of most automata considered in
this chapter is of this form�

According to a speci�c matching problem� the input of an algorithm is a language X described by
a word� by a �nite set of words� or by a regular expression� and a word y� The output can have several
forms� To implement an algorithm that tests whether the pattern occurs in the word or not� the output
is just the boolean value true or false respectively� In an on
line search� what is desired is the word�
say z� on the alphabet f�� �g that encodes the existence of end
positions of the pattern� the length of
z is jyj� �� and its j � �
th letter is � exactly when an occurrence of the pattern ends at position j in
y� The output can also be the set� say P � of positions �or end
positions� in y of the pattern� To avoid
presenting several variants of algorithms� we introduce the statement

occurrenceif e

where e is an appropriate predicate� It can be translated by

if e
then return true

in the �rst case�

if e
then z � z � �
else z � z � �

in the second case� and

if e
then P � P � fthe current position in yg
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Matcher�X�y�
Preprocessing phase

� built an automaton �Q� i� T� E� recognizing A�X
Search phase
let � be the transition function of �Q� i� T� E�

� p� i
� occurrenceif p � T

 for letter a from �rst to last letter of y
� loop p� ��p� a�
� occurrenceif p � T

Fig� ���� Given a regular language X and a word y� locate all occurrences of words in X that are factors of y�

in the third case� In the �rst case� the �return false� statement has to be included correspondingly at
the end of the algorithm� and in the other cases� word z and set P should be initialized at the beginning
of the algorithm and returned at the end of the algorithm� From now on� the standard algorithm for
matching patterns in words can be written as in Figure ����

The asymptotic time and space complexities of algorithmMatcher depend on the representation of
the automaton� and more speci�cally� on the representation of the transition function � �see Section ���
More generally� the complexities of algorithms� functions or procedures developed in this chapter are
expressions of the size of the input� They include the size of the language� the length of the searched
word� and the size of the alphabet� We assume that the �occurrenceif e� statement is performed in
constant time� Nevertheless� an ad hoc output often underlies the complexity result�

�� Representations of deterministic automata

Several pattern matching algorithms rely on a particular representation of the deterministic automaton
underlying the method� Implementing a deterministic automaton �Q� i� T�E� remains to implement the
transition function � of the automaton� which is the general problem of realizing partial functions� Five
methods are described in this section� transition matrix� adjacency lists� transition list� failure function�
and table
compression�

The choice of the representation of the automaton in�uence the time needed to compute a transition�
i�e� the time to evaluate ��p� a�� for any state p and any letter a� This time is called the delay� in that
it is also the time spent on letter a before moving to the next letter of the input word� Basically� on
the one hand� the time to evaluate ��p� a� is constant in a model where branchings are allowed and a
transition matrix implements �� on the other hand� if comparison of letters is the only operation allowed
on them� the time to evaluate ��p� a� is O�log card�A��� assuming that any two letters can be compared
in one unit of time �using binary operations �� ��� � or ��� In the following� we give the memory space
and the delay associated to each type of representation� There is an obvious trade
o
 between these two
quantities�

In the chapter� having a representation R of the transition function �� the automaton is indi
erently
denoted by �Q� i� T�E�� �Q� i� T� ��� and �Q� i� T�R��

��� Transition matrix

The simplest method to implement the transition function � is to store its values in a Q � A
matrix�
This is a method of choice for a complete deterministic automaton on a small alphabet and when letters
can be assimilated to indices on an array� The space required is O�card�Q� � card�A�� and the delay is
O����

When the automaton is not complete� the representation still works except that the searching pro

cedure can stop on an unde�ned transition� The matrix can even be initialized in time proportional to
the number of edges of the automaton with the help of a sparse matrix representation technique� The
above complexities are still valid in this situation�

This kind of representation implicitly assumes that the working alphabet is �xed and known by
advance� This contrasts with the representations of Sections ��� and ��� for which the basic operation
on the alphabet is comparing letters�
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��� Adjacency lists

A traditional way of implementing graphs is to use adjacency lists� This applies to automata as well�
Doing so� the set of couples �a� ��p� a��� whenever ��p� a� is de�ned� is associated with each state p � Q�
The space required to represent the card�Q� adjacency lists of the automaton is O�card�Q� � card�E���
Contrary to the previous method� this one works even if the only possible elementary operation on letters
is comparison� Denoting by d the maximum degree of states of the automaton� the delay is O�log d��
which is also O�logminfcard�Q�� card�A�g�� using an e�cient implementation of sets based for instance
on balanced trees�

The space complexity may be further reduced by considering a default �target� state associated to
each adjacency list �the most frequently occurring target of a given adjacency list is an obvious choice
as default for this adjacency list�� The delay can even be improved at the same time because adjacency
lists become smaller�

When implementing the automaton� each adjacency list is stored in an array G indexed by Q� If the
deterministic automaton is complete and if the initial state i is the uniform default state �i as default
state �ts in perfectly with pattern matching applications�� the computation of a transition from any
state p by any letter a� that is� the computation of ��p� a�� is done by the function of Figure ����

AdjacencyLists�Transition�p� a�
� p� state of the couple of label a in G�p�
� if p � nil

� then p� i

 return p

Fig� ���� Computation of the transition from a state p by a letter a when an array G of adjacency lists represents
the transition function�

��� Transition list

The transition list method consists in implementing the list of triples �p� a� q� of edges of the automaton�
The space required by the implementation is only O�card�E��� Doing so� it is assumed that the list
is stored in a hashing table to provide fast computations of transitions� The corresponding hashing
function is de�ned on couples �p� a� from Q�A� Then� given a couple �p� a�� the access to the transition
�p� a� q�� if it appears in the list� is performed in constant time on the average under usual hypotheses
on the technique�

��� Failure function

The main idea of the failure function method is to reduce the space needed by �� by deferring� in
most possible cases� the computation of the transition from the current state to the computation of the
transition from an other given state with the same input letter� It serves to implement deterministic
automata in the comparison model� Its main advantage is that� in general� it provides a linear
space
representation� and� simultaneously� gives a linear
time cost for a series of transitions� though the time
to compute one transition is not necessarily constant�

We only consider the case where the deterministic automata is complete and where i is the default
state �extensions of the following statement are not needed in the chapter��

Let � be a function from Q � A to Q� and let f be a function from Q into itself� We say that the
couple ��� f� represents the transition function � if � is a subfunction of � and if

��p� a� �

��
	
��p� a�� if ��p� a� is de�ned�
��f�p�� a�� if ��p� a� is unde�ned and f�p� is de�ned�
i� otherwise�

for each �p� a� � Q� A� In this situation� the state f�p� is a stand
in of state p� The functions � and f
are respectively said to be a subtransition function and a failure function� according to �� However� this
representation is correct if we assume that f de�nes an order on Q�
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Assuming a representation of � by adjacency lists� the space needed to represent � by the couple
��� f� is O�card�Q� � card�E���� where

E� � f�p� a� q� j �p� a� q� � E and ��p� a� is de�nedg��
which is of course O�card�Q� � card�E�� since E� � E� �Notice that � is the transition function of the
automaton �Q� i� T�E���� If d is the maximum degree of states of the automaton �Q� i� T�E��� the delay
is typically O�card�Q� � logd�� that is also O�card�Q� � log card�A���

When implementing the automaton� the values of the failure function f are stored in an array F
indexed by Q� The computation of a transition is done by the function of Figure ���� The function
always stops if we assume that f de�nes an order on Q�

FailureFunction�Transition�p� a�
� while p �� nil and ��p� a� � nil

� loop p� F �p�
� if p �� nil

 then p� ��p� a�
� else p� i
� return p

Fig� ���� Computation of the transition from a state p by a letter a when a subtransition � and an array F
corresponding to a failure function represent the transition function�

��	 Table
compression

The latest method is a mix of the previous ones that provides fast computations of transitions via arrays
and a compact representation of edges via failure function�

Four arrays� denoted here by fail� base� target� and check� are used� The fail and base arrays are
indexed by Q� and� for each �p� a� � Q�A� base �p��a is an index on target and check arrays� assimilating
letters to integers�

The computation of the transition from some state p with some input letter a proceeds as follows�
let k � base�p� � a� then� if check �k� � p� target�k� is the target of the edge of source p and label a�
otherwise� this statement is repeated recursively with state fail �p� and letter a� �Notice that it is correct
if fail de�nes an order on Q� as in Section ���� and if the targets from the smallest element are all
de�ned�� The corresponding function is given in Figure ����

TableCompression�Transition�p� a�
� while check�base�p� � a� �� p
� loop p� fail�p�
� return target�base�p� � a�

Fig� ���� Computation of the transition from a state p by a letter a in the table�compression method with
suitable arrays fail� base� target� and check�

In the worst case� the space needed is O�card�Q� � card�A�� and the delay is O�card�Q��� However
the method can reduce the space to O�card�Q��card�A�� with an O��� delay in best possible situation�

�� Matching regular expressions

��� Outline

Problem ���� �Regular
expression
matching problem�� Given a regular expression x� preprocess it in
order to locate all occurrences of words of Lang�x� that occur in any given word y�
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A well
known solution to the above problem is composed of two phases� First� transform the regular
expression x into a nondeterministic automaton that recognizes the language described by x� following
a construction due to Thompson� Second� simulate the obtained automaton with input word y in such
a way that it recognizes each pre�x of y that belongs to A�Lang �x��

Main Theorem ���� The regular expression�matching problem for x and y can be achieved in the
following terms	

� a preprocessing phase on x building an automaton of size O�jxj�
 performed in time O�jxj� and O�jxj�
extra�space�

� a search phase executing the automaton on y performed in time O�jxj jyj� and O�jxj� space
 the time
spent on each letter of y being O�jxj��
The construction of the automaton is given in Section ���� In Section ���� we �rst show how to solve

the membership test� namely� �does y belongs to Lang�x���� we then present the solution to the search
phase of the regular
expression
matching problem as a mere transformation of the previous test� Finally�
in Section ���� we discuss a possible use of a deterministic automaton to solve the problem�

In the whole section� we assume that the regular expression contains no redundant parentheses�
because otherwise the parsing of the expression would not be necessarily asymptotically linear in the
length of the expression�

��� Regular
expression
matching automata

In order to solve the problem in space linear in the length of the regular expression� we consider special
nondeterministic automata�

We say that an automaton is extended if it is de�ned on the extended alphabet A � f�g� Observe
that a transition from a state to another in an extended automaton may either result of the reading of
a letter from the input word� or not ��
transition��

Theorem ���� Let x be a regular expression� There exists a normalized extended automaton recognizing
Lang�x� satisfying the following conditions	

�i� the number of states is bounded by �jxj�
�ii� the number of edges labeled by letters of A is bounded by jxj
 and the number of edges labeled by �

is bounded by �jxj�
�iii� for each state the number of ingoing or outgoing edges is at most �
 and it is exactly � only when

the edges are labeled by ��

Proof� The proof is by induction on the length of regular expressions�
The regular expressions of length equal to � are �� �� and a� for each a � A� They are respectively

recognized by normalized extended automata in the form��
i� t
�
� i�

�
t
�
� �

�
�

��
i� t
�
� i�

�
t
�
�
�
�i� �� t�

��
�

and ��
i� t
�
� i�

�
t
�
�
�
�i� a� t�

��
�

where i and t are two distinct states� The automata are depicted in Figure ����

i t i t
�

i t
a

�I� �II� �III�

Fig� ���� Normalized extended automata recognizing the regular expressions � �I�� � �II�� and a �III� for some
a � A�
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Now� let �Q�� i�� ft�g� E�� and �Q��� i��� ft��g� E��� be normalized extended automata recognizing respec

tively the regular expressions u and v� assuming that Q�
Q�� � �� Then the regular expressions u�v�
u � v� and u� are respectively recognized by normalized extended automata in the form�

Q� �Q�� � �i� t�� i�
�
t
�
� E� �E�� � ��i� �� i��� �i� �� i���� �t�� �� t�� �t��� �� t���

where i and t are two distinct states chosen out of Q� �Q����
Q� �Q��� i��

�
t��
�
� E� �E�� � ��t�� �� i������

and �
Q� � �i� t�� i�

�
t
�
� E� �E�� � ��i� �� i��� �i� �� t�� �t�� �� i��� �t�� �� t���

where i and t are two distinct states chosen out of Q�� The automata are depicted in Figure ����

i

i� t�

i�� t��

t

�

�

�

�
i

i� t�

t

� �

�

�

�I� �III�

i� t� i�� t��
�

�II�

Fig� ���� Normalized extended automata recognizing the regular expressions u� v �I�� u � v �II�� and u
� �III��

obtained from normalized extended automata �Q�� i�� ft�g� E�� and �Q��� i��� ft��g� E��� recognizing respectively the
regular expressions u and v�

The above construction clearly proves the existence of a normalized extended automaton recognizing
the language described by any given regular expression� It remains to check that the automaton satis�es
conditions �i� to �iii�� Condition �i� holds since exactly two nodes are created for each letter of a regular
expression accounting for its length� Condition �ii� is easy to establish� using similar arguments� And
the last condition follows from construction� ut

The previous result proves one half of the theorem of Kleene �the second half of the proof may be
found in any standard textbook on automata or formal language theory��

Theorem ��� �Kleene� �
	��� A language is recognizable if and only if it is regular�

We denote by E�x� the normalized extended automaton constructed in the proof of Theorem ���
from the regular expression x� and we call it the regular�expression�matching automaton of x�

To evaluate the time complexity of the above construction� it is necessary to give some hints about
the data structures involved in the representation of regular
expression
matching automata� Due to the
conditions stated in Theorem ���� a special representation of regular
expression
matching automata is
possible providing an e�cient implementation of the construction function� States are simply indices on
an array that store edges� each cell of the array has to store at most two edges whose ingoing state is
its index� Indices of the initial state and of the terminal state are stored separately� This shows that the
space required to store E�x� is linear in its number of states� which is linear in the length of x according
to Theorem ����

Hence� each of the operations induced by �� � or � can be implemented to work in constant time�
This proves that the time spent on each letter of x is constant� In addition� the function which builds
the regular
expression
matching automaton corresponding to a given regular expression is driven by a
parser of regular expressions� Then� if parenthesizing in x is not redundant� the time and the space
needed for the construction of E�x� is linear in the length of x�

We have established the following result�
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Theorem ���� Let x be a regular expression� The space needed to represent E�x� is O�jxj�� The com�
putation of the automaton is performed in time and space O�jxj��

��� Searching with regular
expression
matching automata

The search for end
positions of words in Lang�x� is performed with a simulation of a deterministic
automaton recognizing A�Lang�x�� Indeed� the determinization is avoided because it may lead to an
automaton with a number of states which is exponential in the length of the regular expression �see
Section ����� But the determinization via the subset construction is just simulated� at a given time� the
automaton is not in a given state� but in a set of states� This subset is recomputed whenever necessary
in the execution of the search�

As for the determinization of automata with �
transitions� the searching procedure needs the notion
of closure of a set of states� if S is a set of states� its closure is the set of states q such that there exists
a path labeled by � from a state of S to q� From the closure of a set of states� it is possible to compute
e
ectively the transitions induced by any input letter�

The simulation of a regular
expression
matching automaton consists in repeating the two operations
closure and computation of transitions on a set of states� These two operations are respectively performed
by functions Closure and Transitions of Figures ��� and ���� With careful implementation� based
on standard manipulation of sets and queues� the time and the space required to compute a closure or
the transitions from a closure are linear in the size of involved sets of states�

Closure�E� S�
� R� S
� �� EmptyQueue

� for each state p in S

 loop Enqueue��� p�
� while not QueueIsEmpty���
� loop p� Dequeue���

 for each state q such that �p� �� q� is in E
� loop if q is not in R
� then R� R � fqg

�� Enqueue���q�
�� return R

Fig� ���� Computation of the closure of a set S of states� with respect to a set E of edges�

Transitions�E�S� a�
� R� �

� for each state p in S
� loop for each state q such that �p� a� q� is in E

 loop R� R� fqg
� return R

Fig� ���� Computation of the transitions by a letter a from states of a set S� with respect to a set E of edges�

A basic use of an automaton consists in testing whether it recognizes some given word� Testing
whether y is in the language described by x is implemented by the algorithm of Figure ���� The next
proposition states the complexity of such a test�

Proposition ���� Given a regular expression x
 testing whether a word y belongs to Lang�x� can be
performed in time O�jxj jyj� and space O�jxj��
Proof� The proof is given by algorithm Tester of Figure ��� for which we analyze the complexity�

According to Theorem ���� the regular
expression
matching automaton �Q� i� ftg� E� of x can be
built in time and space O�jxj��

Each computation of functions Closure and of Transitions requires time and space O�card�Q���
which is O�jxj� from Theorem ���� This is repeated jyj times� This gives O�jxj jyj� time� ut
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RegularExpressionTester�x� y�
� built the regular�expression�matching automaton �Q� i� ftg� E� of x
� C � Closure�E� fig�
� for letter a from �rst to last letter of y

 loop C � Closure�E�Transitions�E�C� a��
� return t � C

Fig� ���� Algorithm for testing whether a word y belongs to Lang�x�� x being a regular expression�

We now come back to our main problem� It is slightly di
erent than the previous one� because the
answer to the test has to be reported for each factor of y� and not only on y itself� But no transformation
of E�x� is necessary� A mere transformation of the search phase of the algorithm is su�cient� at each
iteration of the closure computation� the initial state is integrated to the current set of states� Doing so�
each factor of y is tested� Moreover� the �occurrenceif t � C� instruction is done at each stage� The
entire algorithm is given in Figure ���� The following theorem established the complexity of the search
phase of the algorithm�

RegularExpressionMatcher�x� y�
� built the regular�expression�matching automaton �Q� i� ftg� E� of x
� C � Closure�E� fig�
� occurrenceif t � C

 for letter a from �rst to last letter of y
� loop C � Closure�E�Transitions�E�C� a� � fig�
� occurrenceif t � C

Fig� ��	� Algorithm for computing pre�xes of a word y that belong to A�Lang�x�� x being a regular expression�

Theorem ��	� Let x be a regular expression and y be a word� Finding all end�positions of factors of
y that are recognized by E�x� can be performed in time O�jxj jyj� and space O�jxj�� The time spent on
each letter of y is O�jxj��
Proof� See the proof of Proposition ���� The second part of the statement comes from that fact� the
time spent on each letter of y is linear in the time required by the computations of functions Closure
and Transitions� ut

��� Time
space trade
o�

The regular
expression
matching problem for a regular expression x and a word y admits a solution
based on deterministic automata� It proceeds as follow� build the automaton E�x�� built an equivalent
deterministic automaton� search with the deterministic automaton� The drawback of this approach is
that the deterministic automaton can have a number of states exponential in the length of x� This is
the situation� for example� when

x � a

m�� timesz 
� �
�a � b� � � � �a� b�

for some m � �� here� the minimal deterministic automaton recognizing A�Lang�x� has exactly �m

states since the recognition process has to memorize the last m letters read from the input word y�
However� all states of the deterministic automaton for A�Lang�x� are not necessarily met during the
search phase� So� a lazy construction of the deterministic automaton during the search is a possible
compromise for practical purposes�

�� Matching �nite sets of words

	�� Outline

Problem 	��� �Dictionary
matching problem�� Given a �nite set of words X� the dictionary� preprocess
it in order to locate words of X that occur in any given word y�
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The classical solution to this problem is due to Aho and Corasick� It essentially consists in a linear

space implementation of a complete deterministic automaton recognizing the language A�X� The im

plementation uses both adjacency lists and an appropriate failure function�

Main Theorem 	�� �Aho and Corasick� �
�	�� The dictionary�matching problem for X and y can
be achieved in the following terms	

� a preprocessing phase on X building an implementation of size O�jXj� of an automaton recognizing
A�X
 performed in time O�jXj � log card�A�� and O�card�X�� extra�space�

� a search phase executing the automaton on y performed in time O�jyj � log card�A�� and constant
extra�space
 the delay being O�jXj � log card�A���

If we allow more extra
space� the asymptotic time complexities can be reduced� This is achieved� for
instance� by using techniques of Section � for representing deterministic automata with a sparse matrix�
and assuming that O�jXj � card�A�� space is available� The time complexities of the preprocessing and
search phases are respectively reduced to O�jXj� and O�jyj�� and the delay to O�jXj�� Nevertheless�
notice that the times complexities given in the above theorem are still linear in jXj or jyj if we consider
�xed alphabets�

The method behind Theorem ��� is based on a speci�c automaton recognizing A�X� its states are
the pre�xes of words in X �their number is �nite as X is�� The automaton is not minimal in the general
case� It is presented in Section ���� and its implementation with a failure function is given in Section ����
Section ��� is devoted to the search for X with the automaton�

	�� Dictionary
matching automata

We give a complete deterministic automaton that recognizes A�X� In order to formalize this automaton�
we introduce for each language U the mapping hU �A

� 	 Pref �U � de�ned for each word v by

hU �v� � the longest su�x of v that belongs to Pref �U ��

�In the whole Section �� U refers to an ordinary language� and X refers to a �nite language��

Proposition 	��� Let X be a �nite language� Then the automaton�
Pref �X�� �� Pref �X� 
A�X�

�
�p� a� hX�pa�� j p � Pref �X�� a � A

��

recognizes the language A�X� This automaton is deterministic and complete�

In the following� we denote by D�X� the automaton of Proposition ��� applied to X� and we call it
the dictionary�matching automaton of X�

The proof of Proposition ��� relies on the following result�

Lemma 	��� Let U � A�� Then

�i� v � A�U i� hU �v� � A�U 
 for each v � A��

Furthermore
 hU satis�es the relations	

�ii� hU��� � ��
�iii� hU�va� � hU�hU �v�a�
 for each �v� a� � A� �A�

Proof� If v � A�U � then v is in the formwu where w � A� and u � U � by de�nition of hU � u is necessarily
a su�x of hU �v�� therefore hU �v� � A�U � Conversely� if hU �v� � A�U � we have also v � A�U � because
hU �v� is a su�x of v� Which proves �i��

Property �ii� clearly holds�
It remains to prove �iii�� Both words hU �va� and hU�v�a are su�xes of va� and therefore one of them

is a su�x of the other� Then we distinguish two cases according to which word is a su�x of the other�
First case� hU �v�a is a proper su�x of hU �va� �hence hU �va� �� ��� Consider the word w de�ned by

w � hU �va�a��� Thus we have� hU �v� is a proper su�x of w� w is a su�x of v� and since hU �va� �
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Pref �U �� w � Pref �U �� Whence w is a su�x of v that belongs to Pref �U �� but strictly longest than
hU �v�� This contradicts the maximality of jhU�v�j� So this case is impossible�

Second case� hU �va� is a su�x of hU �v�a� Then� hU�va� is a su�x of hU �hU�v�a�� Now� since hU �v�a
is a su�x of va� hU �hU�v�a� is a su�x of hU �va�� Both properties implies hU�va� � hU�hU �v�a�� and
the expected result follows� ut
Proof of Proposition ��
� Let v � A�� It follows from properties �ii� and �iii� of Lemma ��� that


hX�v�v� � � �vj���� vi� hX�v�v� � � �vj�
�
��j�jvj

is a path labeled by v from the initial state � to the state hX �v��
If v � A�X� we get hX �v� � A�X from �i� of Lemma ���� which shows that hX �v� is a terminal state�

and �nally that v is recognized by the automaton�
Conversely� if v is recognized by the automaton�we have hX�v� � A�X by de�nition of the automaton�

This implies that v � A�X from �i� of Lemma ��� again� ut
We show how to implement the automaton D�X� in the next section�

	�� Linear dictionary
matching automata

The automaton D�X� is implemented with a failure function� The aim is to get a representation that
does not depend on the size of the alphabet�

For each language U � let fU �Pref �U �	 Pref �U � be the function de�ned for each nonempty word u
in Pref �U � by

fU �u� � the longest proper su�x of u that belongs to Pref �U ��

Lemma 	��� Let U � A�� For each �u� a� � Pref �U � �A
 we have	

hU �ua� �

��
	
ua� if ua � Pref �U �

hU �fU �u�a�� if u �� � and ua �� Pref �U �

�� otherwise�

Proof� The identity clearly holds when ua � Pref �U � or when ua �� Pref �U � but u � ��
It remains to examine the case where ua �� Pref �U � and u �� �� Here� fU �u�a is a proper su�x of ua�

What is more� hU�fU �u�a� is the longest su�x of ua that belongs to Pref �U �� Indeed� if we assume the
existence of a su�x v of ua satisfying v � Pref �U � and jvj � jfU�v�aj� we get that va�� is a proper su�x
of u belonging to Pref �U �� then va�� � fU �u� because of the maximality of jfU �u�j� Which achieves the
proof� ut

We introduce for each language U the function �U �Pref �U � � A 	 Pref �U � associating with each
�u� a� � Pref �U � � A such that ua � Pref �U � the word ua� Thus� with conventions of Section ���� we
have�

Proposition 	��� For each �nite language X
 the couple ��X � fX� represents the transition function
of D�X�� function �X is a subtransition function and function fx a failure function
 according to the
transition function of D�X��

Proof� Follows from Lemma ���� ut
Now� let us observe that function �X is exactly the transition function of the deterministic automaton�

Pref �X�� �� X�
�
�p� a� pa� j p � Pref �X�� a � A� pa � Pref �X�

��
�

This automaton recognizes the language X� and is classically called the trie of X� as a reference to
�information retrieval�� It is built by function Trie of Figure ����

Proposition 	��� Function Trie applied to any �nite language X builds the trie of X� If the edges of
the automaton are implemented via adjacency lists
 the size of the trie is O�jXj�
 and the construction
is performed in time O�jXj � log d� within constant extra�space
 d being the maximum degree of states�
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Trie�X�
let � be the transition function of �Q� i� T�E�

� �Q�T�E� � �������
� i� State�Creation
� for word x from �rst to last word of X

 loop t� i
� for letter a from �rst to last letter of x
� loop q � ��t� a�

 if q � nil

� then q � State�Creation
� E � E � f�t� a� q�g

�� t� q
�� T � T � ftg
�� return �Q� i� T� E�

Fig� ���� Construction of the trie of a �nite set of words X�
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a

b

b

a

b b

b

Fig� ���� The trie of fab�babb�bbg�

When X � fab� babb� bbg� the trie of X is as depicted in Figure ���� This example shall be considered
twice in the following�

To achieve the goal of implementing D�X� in linear size� we use Proposition ���� Then� it remains
to give methods for computing fX and for marking the set of terminal states� This can be done by a
breadth �rst search on the graph underlying the trie starting at the initial state� as shown by the two
following lemmas�

Lemma 	��� Let U � A�� For each �u� a� � Pref �U � �A
 we have	

fU �ua� �

�
hU �fU �u�a�� if u �� �

�� otherwise�

Proof� Similar to the proof of Lemma ���� ut
Lemma 	��� Let U � A�� For each u � Pref �U �
 we have	

u � A�U 
� �u � U � or �u �� � and fU �u� � A�U ��

Proof� It is clearly su�cient to prove that

u � �A�U �nU �� fU �u� � A�U�

So� let u � �A�U �nU � The word u is in the form vw where v � A� and w is a proper su�x of u
belonging to U � Then� by de�nition of fU � w is a su�x of fU �u�� Therefore fU �u� � A�U � Which ends
the proof� ut

The complete function constructing the representation of D�X� with the subtransition �X and the
failure function fX is given in Figure ���� Let us recall that the transition function � of D�X� is assumed
to be computed by function FailureFunction�Transition of Section ���� The next theorem states
the correctness of the construction and its time and space complexities� We call this representation
of D�X� the linear dictionary�matching automaton of X� The term �linear� �in jXj is understood� is
suitable if we work with a �xed alphabet� since degrees are upper
bounded by card�A��
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LinearDictionaryMatchingAutomaton�X�
let � be the transition function of �Q� i� T� E��
let � be the transition function of �Q� i� T� ���F ��

� �Q� i� T�E��� Trie�X�
� F �i�� nil

� �� EmptyQueue

 Enqueue��� i�
� while not QueueIsEmpty���
� loop p� Dequeue���

 for each letter a such that ��p� a� �� nil
� loop q � ��p� a�
� F �q�� ��F �p�� a�

�� if F �q� is in T
�� then T � T � fqg
�� Enqueue���q�
�� return �Q� i� T� ���F ��

Fig� ���� Construction of the linear dictionary�matching automaton of a �nite set of words X�

Theorem 	��� The linear dictionary�matching automaton of any �nite language X is built by function
LinearDictionaryMatchingAutomaton� The size of this representation of D�X� is O�jXj�� The
construction is performed in time O�jXj � log d� within O�card�X�� extra�space
 d being the maximum
degree of states of the trie of X�

Proof� The correctness of the function and the order of the size of the representation is consecutive to
Propositions ���� ���� and ���� and Lemmas ���� ���� and ���� The extra
space is linear in the size of the
queue �� which has always less than card�X� elements�

In order to prove the announced time complexity� we shall see that the last test of the loop of function
FailureFunction�Transition �for computing ��F �p�� a�� see Section ���� is executed less than �jXj
times� To avoid ambiguity� the state variable p of function FailureFunction�Transition is renamed
r�

First� We remark that less tests are executed on the trie than if the words of X were considered
separately�

Second� Considering separately each word x ofX� and assimilating variables p and r with the pre�xes
of x they represent� the quantity �jpj � jrj grows of at least one unity between two consecutive tests
���r� a� � nil�� When jxj � �� no test is performed� But when jxj � �� this quantity is equal to � before
the execution of the �rst test �jpj � �� jrj � ��� and is less than �jxj � � after the execution of the last
test �jpj � jxj � �� jrj � ��� which shows that less than �jxj � � tests are executed in this case�

This proves the expected result on the number of tests�
Now� since each of these tests is performed in time O�logd�� the loop of lines ���� of function

LinearDictionaryMatchingAutomaton is performed in time O�jXj � logd�� This is also the time
complexity of the whole function� since line � is also performed in time O�jXj � logd� according to
Proposition ���� ut

Figure ��� displays the linear dictionary
matching automaton of X when X � fab� babb� bbg� The
failure function fX is depicted with non
labeled discontinuous edges�

�

�

�

�


 � �




a

b

b

a

b b

b

Fig� ���� The linear dictionary�matching automaton of fab�babb�bbg�
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To be complete� we add that fU can be expressed independently of hU for any language U �

Lemma 	�	� Let U � A�� For each �u� a� � Pref �U ��A
 we have	

fU �ua� �

��
	
fU �u�a� if u �� � and ua � Pref �U �

fU �fU �u�a�� if u �� � and ua �� Pref �U �

�� if u � ��

Proof� This follows from Lemmas ��� and ���� ut
However interesting this result is� it does not lead to another computation of linear dictionary


matching automata than the computation performed by the function of Figure ����

	�� Searching with linear dictionary
matching automata

We prove in this section that matching a �nite set of words can be performed in linear time on �xed
alphabets� This is stated in the following theorem�

Theorem 	��� Let X be a �nite set of words and y be a word� Let 	 be the maximum length of words
of X and d be the maximum degree of states of the trie of X� Using the linear dictionary�matching
automaton of X
 searching for all occurrences of words of X as factors of y �search phase of algorithm
Matcher� is performed in time O�jyj � logd�
 constant extra�space
 within a delay of O�	� log d��

Proof� The proof is similar to the proof of Theorem ����
Here� instead of the quantity �jpj � jrj� we consider the quantity �jy�j � jpj where y� is the already

read pre�x of y� We obtain that less than �jyj � � tests ���p� a� � nil� are executed� This proves that
the total time is O�jyj � log d�� For the delay� the test ���p� a� � nil� cannot be executed strictly more
than 	 times on each input letter a� which gives a time O�	 � log d�� ut

The search phase can be improved to prevent unnecessary calls to the failure function as far as it is
possible�

Assume for instance that during the search state � of Figure ��� has been reached� and that the
next letter of the input word� say c� is not b� The failure function has to be iterated at least twice since
neither �X ��� c� nor �X ��� c� are de�ned� It is clear that the test on state � is useless� whatever c is�
The next attempt is to compute �X ��� c�� Here� state � plays its role because c might be equal to a� But
now� if �X ��� c� is unde�ned� it is needless to iterate again the failure function on state �� since c is then
neither a nor b�

Following a similar reasoning for each states of the linear dictionary
matching automaton of X when
X � fab� babb� bbg leads to consider the representation depicted in Figure ����
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Fig� ���� The optimized representation of D�fab�babb�bbg��

More generally� given a �nite language X and the failure function fX � the representation of D�X�

can be optimized by considering another failure function� denoted here by �fX � Introducing the notation
FollowU �u� to denote the set de�ned for each language U and for each word u in Pref �U � by

FollowU �u� � fa j a � A� ua � Pref �U �g�
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it is set that

�fX �p� �

��
	
fX �p�� if p �� � and FollowX�fX �p�� � FollowX�p��
�fX �fX �p��� if p �� � and FollowX�fX �p�� � FollowX�p��
unde�ned� otherwise�

for each p � Pref �X�� The couple ��X � �fX� represents clearly the transition function of D�X�� New
failure states can be computed during a second breadth �rst search� and this can be done directly on
array FX �

However� substituting �fX to fX does not a
ect the maximum delay of the searching algorithm that
still remains O�l � log d�� To show this point� we give a worst case example� Let 
�m� be the language
de�ned for each m � � by�


�m� � fam��
bg � fa�j��

ba j � � j � dm��eg � fa�jbb j � � j � bm��cg�
If X � 
�m� for some m � �� and if am��bc is the already read pre�x of the input� m accesses to
the failure function of the linear dictionary
matching automaton of X are made when reading letter c�
whatever function fX or �fX is chosen� �See the example given in Figure �����

� � �

� 
 �

� 
 �

� ��

b b

a

b a

a

b b

a

b

Fig� ��	� The optimized representation of D���
���

�� Matching words

��� Outline

Problem ���� �String
matching problem�� Given a word x� preprocess it in order to locate all its
occurrences in any given word y�

Let us �rst observe that this problem can be viewed as a particular case of the dictionary
matching
problem �see Section ��� Here� the dictionary has only one element� Moreover� the dictionary
matching
automaton D�fxg�� which recognizes the language A�x� has the minimum number of states required
to recognize A�x� i�e� jxj � � states� Therefore� the minimal automaton recognizing A�x� denoted by
M�A�x�� can be identi�ed with D�fxg�� Since the maximumdegree of states of the trie of fxg is upper

bounded by one� implementing this automaton with the help of the optimized failure function described
Section ��� leads to the following results�

Theorem ��� �Knuth� Morris� and Pratt� �
���� The string�matching problem for x and y can be
performed in time O�jxj� jyj� and space O�jxj�
 the delay being ��log jxj� in the worst�case�
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We just have to hark back to the order of the delay for the algorithm of Knuth� Morris and Pratt� It
is proved that the number of times the transition function of the trie of fxg is performed on any input
letter cannot exceed blog��jxj � ��c where 
 �



� �

p
�
�
�� is the golden ratio� This upper bound is

a consequence of a combinatorial property of words due to Fine and Wilf �known as the �periodicity
lemma��� But it is closed to the worst
case bound� obtained when x is a pre�x of the in�nite Fibonacci
word �see Chapter �Combinatorics of words���

However� as we shall see� implementing M�A�x� with adjacency lists solves the string
matching
problem with the additional feature of having a real
time search phase on �xed alphabets� i�e� with a
delay bounded by a constant�

Main Theorem ���� The string�matching problem for x and y can be achieved in the following terms	

� a preprocessing phase on x building an implementation of M�A�x� of size O�jxj�
 performed in time
O�jxj� and constant extra�space�

� a search phase executing the automaton on y performed in time O�jyj� and constant extra�space
 the
delay being O�logminf� � blog� jxjc� card�A�g��
Underlying the above result are indeed optimal bounds on the complexity of string
matching algo


rithms for which the search phase is on
line with a one
letter bu
er� Relaxing the on
line condition leads
to another theorem stated below� But its proof is based on combinatorial properties of words unrelated
to automata and not considered in this chapter�

Theorem ��� �Galil and Seiferas� �
���� The string�matching problem for x and y previously stored
in memory can be performed in time O�jxj� jyj� and constant extra�space�

In Section ���� we describe an on
line construction ofM�A�x�� The linear implementation via adja

cency lists is discussed in Section ���� We establish in Section ��� properties of M�A�x� that are used
in Section ��� to prove the asymptotic bounds of the search phase claimed in Theorem ����

��� String
matching automata

We give a method to build the automatonM�A�x�� The feature of this method is that it is based on an
on
line construction and that it does not use the usual procedures of determinization and minimization
of automata�

In the remainder of Section � we identify M�A�x� with D�fxg�� which is the automaton�
Pref �x�� ��

�
x
�
�
�
�p� a� hx�pa�� j p � Pref �x�� a � A

��
�

hx�v� being the longest su�x of v which is a pre�x of x� for each v � A�� We call this automaton the
string�matching automaton of x�

An example of string
matching automaton is given in Figure ���� the depicted automaton is
M�A�abaaab� assuming that A � fa� bg�

We introduce the notions of �border� as follows� A word v is said to be a border of a word u if v is
both a pre�x and a su�x of u� The longest proper border of a nonempty word u is said to be the border
of u and is denoted by Bord�u�� As a consequence of de�nitions� we have�

hx�pa� �

�
pa� if pa is a pre�x of x�
Bord �pa�� otherwise�

for each �p� a� � Pref �x� �A�
In order to buildM�A�x�� the construction of the set of edges of the string
matching automaton of

x is to be settled� The construction is on
line� as suggested by the following lemma�

Lemma ���� Let us denote by Eu the set of edges of M�A�u� for any u � A�� We have	

E� �
�
��� b� �� j b � A

�
�

Furthermore
 for each �u� a� � A� �A we have	
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Eua � E�
ua �E��

ua

with
E�
ua �

�
Eun

�
�u� a� hu�ua��

�� � ��u� a� ua��
and

E��
ua �

�
�ua� b� w� j �hu�ua�� b� w� � E�

ua

�
�

Proof� The property for E� clearly holds�
Now� let u � A� and a � A� let E�

ua and E��
ua be as in the lemma� and set v � hu�ua��

Each edge in Eua outgoing a state no longer than juj belongs to E�
ua� The converse is also true�

It remains to prove that each edge in Eua outgoing state ua belongs to E��
ua� and that the converse

holds� This is to prove that for each b � A� the targets w and w� of the edges �v� b� w� and �ua� b� w���
both in Eua� are identical�

Since v is a border of ua� w is both a su�x of uab and a pre�x of ua� Which implies that w is shorter
than w��

Conversely� We have that jw�j � jvbj� �Assuming the contrary leads to consider that w�b�� is a border
of ua contradicting the maximality of v�� Since w� and vb are both su�xes of uab� w� is a su�x of vb�
Now w� is also a pre�x of ua� This shows that w� is shorter than w� and ends the proof� ut

The construction of M�A�ua� from M�A�u� can be interpreted in a visual point of view as the
�unfolding� of the edge �u� a� hu�ua�� of the automatonM�A�u�� An example is given in Figure ��� that
depicts four steps related to the construction of M�A�abaaab��

�

b

a

� �
a

b

a

b

�I� �II�

� � �
a b

b

a

b

a

� � � �
a b a

b

a

b b

a

�III� �IV�

Fig� 	��� During the construction of the string�matching automaton of abaaab� unfolding of the edge ���a� ��
from step ��� �I� to step �a� �II�� of the edge �a�b� �� from step �a� to step �ab� �III�� and of the edge �ab�a�a�
from step �ab� to step �aba� �IV�� It is assumed that A � fa�bg�

A function that builds the string
matching automaton of x following the method suggested by
Lemma ��� is given in Figure ���� This can be used straightforwardly to implement the automaton
via its transition matrix� Following the same scheme� we describe in the next section an implementation
of the string
matching automaton of x which size is both linear in jxj and independent of the alphabet�

��� Linear string
matching automata

We show in this section that implementing string
matching automata via adjacency lists gives represen

tations that are time
linear and space
linear in the length of the pattern� Indeed� the property comes
from the fact� with � as default state in the adjacency lists �see Section ����� the total length of these
lists is linear� This representation reduces the automaton to its signi�cant part� Another way of saying
it� is to consider �signi�cant edges� as follows�

An edge �p� a� q� of a given string
matching automaton is signi�cant if q �� �� and null otherwise� if
the edge is signi�cant� it is forward if q � pa and backward otherwise�



Automata for Matching Patterns ��

StringMatchingAutomaton�x�
let � be the transition function of �Q� i��� E�

� �Q�E� � �����
� i� State�Creation
� for each letter b in A

 loop E � E � f�i� b� i�g
� t� i
� for letter a from �rst to last letter of x

 loop r � ��t� a�
� q � State�Creation
� E � E � f�t� a� r�g� f�t� a� q�g

�� for each letter b in A
�� loop E � E � f�q� b� ��r� b��g
�� t� q
�� return �Q� i� ftg� E�

Fig� 	��� Construction of the string�matching automaton of a word x�

Picking up again the case x � abaaab� the string
matching automaton of x has � forward edges and
� backward edges �see the automaton given in Figure �����

Proposition ���� The number of signi�cant edges of the string�matching automaton of any word x is
upper�bounded by �jxj� more precisely
 its number of forward edges is exactly jxj
 and its number of
backward edges is upper�bounded by jxj� The bounds are reached for instance when the �rst letter of x
occurs only at the �rst position in x�

In order to prove Proposition ���� we shall establish the following result�

Lemma ���� Let �p� a� q� and �p�� a�� q�� be two distinct backward edges of the string�matching automaton
of some word u� Then jpj � jqj �� jp�j � jq�j�
Proof� Suppose for a contradiction the existence of two distinct backward edges �p� a� q� and �p�� a�� q��
of M�A�u� satisfying jpj � jqj � jp�j � jq�j�

In case p � p�� we have that q � q�� Since the two edges are signi�cant� this implies that a � a��
Which is impossible�

Thus� we can assume without loss of generality that jpj � jp�j� thus� jqj � jq�j� Since qa�� is a border
of p �jpj � jqa��j is a period of p� and since q� is a proper pre�x of q� we have

a� � pjq�j � pjq�j�jpj�jqa��j � pjq�j�jp�j�jq�j�� � pjp�j���

Which contradicts the fact that �p�� a�� q�� is a backward edge� ut
Proof of Proposition ��
� The number of forward edges of the automaton is obviously jxj�

Let us prove the upper bound on the number of backward edges� Since the number jpj�jqj associated
to the backward edge �p� a� q� ranges from � to jxj � �� Lemma ��� implies that the total number of
backward edges is bounded by jxj�

We show that the upper bound on the number of backward edges is optimal� Consider that the �rst
letter of x occurs only at the �rst position in x� The edge �p� x�� x�� is an outgoing edge for each state p
of non
zero length of the automaton� and this edge is a backward edge� So� the total number of backward
edges is jxj in this case� ut

Figure ��� displays a string
matching automaton which number of signi�cant edges is maximum for
a word of length 	�

From the previous proposition� an implementation of M�A�x� via adjacency lists with the initial
state � as uniform default state has a size linear in jxj� since the edges represented in the adjacency
lists are the signi�cant edges of the automaton� We call this representation of the string
matching
automaton of x the linear string�matching automaton of x� It is constructed by the function given in
Figure ���� This function is a mere adaptation of the general function given in Figure ���� Recall that the
transition function of the linear string
matching automaton of x is assumed to be computed by function
AdjacencyLists�Transition of Section ����
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Fig� 	��� A string�matching automaton with the maximum number of signi�cant edges� The signi�cant edges
are the only depicted edges� the target of other edges is ��

LinearStringMatchingAutomaton�x�
let � be the transition function of �Q� i���G�

� Q� �

� i� State�Creation

� G�i�� �


 t� i
� for letter a from �rst to last letter of x
� loop r � ��t� a�

 q � State�Creation
� if r �� i
� then G�t�� G�t�� f�a� r�g

�� G�t�� G�t� � f�a� q�g
�� G�q� � G�r�
�� t� q
�� return �Q� i� ftg�G�

Fig� 	��� Construction of the linear string�matching automaton of a word x�

Theorem ���� Function LinearStringMatchingAutomaton builds the linear string�matching au�
tomaton of any given word x� The size of this representation of M�A�x� is O�jxj�� The construction is
performed in time O�jxj� and constant extra�space�

Proof� The correctness of the function is consecutive to Lemma ���� The order of the size of the repre

sentation follows from Proposition ����

The time required to build the set of all signi�cant edges outgoing a given state is linear in their
number �the operations executed on the adjacency list associated to a given state p �� x are the operations
occurring in Figure ��� at line � if p � i and at line �� otherwise� then at line � if necessary� then �nally
at line ��� the corresponding operations for state x are at line � if x � � and at line �� otherwise��
Hence� the total time is O�jxj� from Proposition ���� ut

We show in Section ��� that the linear representation of the string
matching automaton of x described
above yields a search for occurrences of x in y that runs in time linear in jyj� Before that� we establish
combinatorial properties of string
matching automata in the next section�

��� Properties of string
matching automata

We establish in this section some upper bounds for the number of signi�cant edges of string
matching
automata� These bounds complete the global bound given in Proposition ���� by focusing on the number
of outgoing signi�cant edges� The two main results� namely Propositions ��� and ���� are intensively
used in Section ����

Given a word u� we denote by seu�p� the number of signi�cant edges outgoing the state p of the
string
matching automaton of u� if p is a pre�x of u and q a pre�x of p� the notation seu�p� q� stands
for the number of signi�cant edges which sources range in the set of pre�xes of u from q to p� i�e� the
number

seu�q� � seu�q � pjqj��� � � � �� seu�q � pjqj�� � � �pjpj��� � seu�p��
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The next two lemmas provide recurrence relations satis�ed by the numbers seu�p�� The expressions are
stated using the following notation� given a predicate e� the integer denoted by ��e� has value � when
e is true� and value � otherwise�

Lemma ���� Let �u� a� � A� �A� For each v � Pref �ua�
 we have	

seua�v� �

��
	

seu�Bord�ua��� if v � ua

seu�u� � ��Bord�ua� � ��� if v � u

seu�v�� otherwise�

Proof� This is a straightforward consequence of Lemma ���� ut
Lemma ���� Let u � A�� For each v � Pref �u�
 we have	

seu�v� �

���
�	

seu�Bord�u��� if v � u

seu�Bord�v�� � ��Bord�va� � ��� if va � Pref �u�

for some a � A

�� if v � ��

Proof� Follows from Lemma ���� ut
The next lemma is the �cornerstone� of the proof of the logarithmic bound given in Proposition ���

stated afterwards�

Lemma ��	� Let u � A�� For each v � Pref �u�nf�g
 we have	

�jBord�v�j � jvj �� seu�Bord�v�� � seu�Bord
��v���

Proof� Set k � �jBord�v�j� jvj� w � v�v� � � �vk� and a � vk��� Since wa is a proper border of Bord �v�a�
the border of Bord�v�a is nonempty� Then we apply Lemma ��� to the proper pre�x Bord �v� of u� ut
Proposition ���� Let u � A�� For each state p of M�A�u�
 we have	

seu�p� � � � blog��jpj� ��c�
Proof� We prove the result by induction on jpj� From Lemma ���� this is true if jpj � �� Next� suppose
jpj � ��

Let j be the integer such that
�j � jpj� � � �j���

then let k be the integer such that

jBordk���p�j� � � �j � jBordk�p�j� ��

Let 	 � f�� � � � � k � �g� we have �jBord����p�j � �j�� � � � jpj � jBord��p�j� which implies
seu�Bord

����p�� � seu�Bord
����p�� from Lemma ���� Hence we get the equality

seu�Bord�p�� � seu�Bord
k���p���

From the induction hypothesis applied to the state Bordk���p�� we get

seu�Bord
k���p�� � � � blog��jBordk���p�j� ��c�

Now Lemma ��� implies
seu�p� � seu�Bord �p�� � ��

This shows that
seu�p� � j � � � � � blog��jpj� ��c�

and ends the proof� ut
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Fig� 	��� The string�matching automaton of abacabad without its null edges�

By way of illustration� we consider the case where x � abacabad� Given a state p of M�A�x� �see
Figure ����� the � � blog��jpj � ��c bound for the number of signi�cative edges outgoing p is reached
when jpj � �� �� �� or 	�

Proposition ���� Let u � A�� For each backward or null edge �p� a� q� of M�A�u�
 we have	

seu�p� q� � �jpj � �jqj� �� ��p � u�� ��q � ���

Proof� The property clearly holds when u is the power of some letter� The remainder of the proof is by
induction�

So� let u � A�� b � A� and let �p� a� q� be a backward or null edge of M�A�ub��
If jpj � juj� �p� a� q� is also an edge of M�A�u�� By application of Lemma ���� we obtain that

seub�p� q� � seu�p� q� � ��p � u��

Otherwise p � ub� Let r be the border of ub� We only have to examine the case where r is a proper
pre�x of u �if r � u� then u � b��� Thus �r� a� q� is an edge ofM�A�u� and ofM�A�ub�� If it is a forward
edge� i�e� if q � ra� we obtain from Lemma ��� that

seub�p� q� � seu�u� r� � ��r � ���

and if it is a backward edge we obtain that

seub�p� q� � seu�r� q� � seu�u� r� � ��r � ���

The result now follows by applying of the induction hypothesis to u� ut
The previous result is illustrated by the example given in Figure ���� i�e� when x � abbbbbb� In this

case� the �jpj��jqj�����p � x����q � �� bound is reached for any backward or null edge ofM�A�x��
Observe that Proposition ��� provides another proof of the �jxj bound given in Proposition ��� as

follows� We consider a null edge outgoing state x �possibly extending the alphabet by one letter�� For
this edge� with the notation of Proposition ���� we have p � u � x and q � �� Thus� sex�x� ��� which is
the total number of signi�cant edges of M�A�x�� is not greater than �jxj � �j�j� �� �� � � �jxj�

��	 Searching with linear string
matching automata

Our proof of Theorem ��� consists in considering linear string
matching automata for matching words�
We then consider the model of computation where none ordering on the alphabet is assumed� and
give some optimal bounds for string
matching algorithms for which the search phase is on
line with a
one
letter bu
er�

Consider the search phase of algorithm Matcher using the linear string
matching automaton of
a given word x� For each backward or null edge �p� a� q� of the string
matching automaton of x� let
us denote by cx�p� q� the maximum time for executing the series of transitions from q to q via p� i�e�
for reading the word xjqj��xjqj�� � � �xjpja starting in state q� Let us also denote by Cx�y� the time for
executing the search phase when y is the searched word� i�e� the time for executing the automaton on y�
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Lemma ���� Let x� y � A�� There exists a �nite sequence of backward or null edges of M�A�x�
 say
��pj � aj� qj����j�k
 satisfying the three following conditions	

�i� qk � ��

�ii�
Pk

j��


jpjj � jqjj� �
�
� jyj�

�iii� Cx�y� �
Pk

j�� cx�pj� qj��

Proof� The proof is by induction on jyj� Since the property trivially holds when jyj � �� we assume that
jyj � ��

Observe �rst that since an upper bound is expected for Cx�y�� we can assume� even if the alphabet
has to be extended by one letter� that the last letter of y is not a letter occurring actually in x� Hence�
we can assume that the lastly performed transition corresponds to a null edge�

Now� let �p������jyj be the sequence of successive values of the current state p of algorithmMatcher

�in other words p� � hx�y�y� � � �y���� Let m� � � m � jyj � �� be the minimal integer satisfying
pm�� � pm� for some m� � m� then let m� be the integer in f�� � � � �mg such that pm� � pm��� Thus�
the triple �pm� ym��� pm�� is a backward or null edge of M�A�x�� and the m�m� � � successive letters
ym���� ym���� � � � � ym�� of y have been read during the computation of the transitions from pm� to pm��

via pm� Consider the word y� de�ned by y� � y�y� � � �ym� � ym��ym�� � � �yjyj� Following the de�nition of
m and m� we have that Cx�y� � cx�pm� pm�� � Cx�y

��� Applying the induction hypothesis to y� gives
the existence of a �nite sequence e� as depicted in the statement� The expected sequence related to y
can then be obtained by adding the edge ��pm� ym��� pm��� in front of the sequence e�� It clearly satis�es
conditions �i� to �iii�� This ends the proof� ut
Theorem ��	� Let x and y be words� Using the linear string�matching automaton of x
 searching for
all occurrences of x as factors of y �search phase of algorithm Matcher� is performed in time O�jyj�

constant extra�space
 within a delay O�logminf� � blog� jxjc� card�A�g��
Proof� Whatever e�cient is the implementation of adjacency lists� we may assume that the time for
executing the transition from the current state by the current input letter is asymptotically linear in
the number of signi�cant edges outgoing the involved state� For each backward or null edge �p� a� q� of
M�A�x�� this assumption implies that

cx�p� q� � O�sex�p� q���

which leads to
cx�p� q� � O�jpj � jqj� ���

by application of Proposition ���� We �nally apply Lemma ���� and get the O�jyj� bound�
We now turn to the proof of the delay� The cardinality of each adjacency list is both upper
bounded

by card�A�� and� from Lemma��� and Proposition ���� by ��blog� jxjc� Now� observe that each adjacency
list can be arranged in a balanced tree when computing it� without loosing the linear
time complexity
of the construction� This provides a logarithmic time for computing a transition� Which proves the
asymptotic bound of the delay� ut

In the remainder of the section� no ordering on the alphabet is assumed� contrary to what is assumed
for the previous statement� The model of computation is the comparison model in which algorithms have
access to the input words by comparing pairs of letters to test whether they are equal or not� Within
this model� given a word x� we denote by S�x� the family of the string
matching algorithms for which
the search phase is on
line with a one
letter bu
er�

String
matching algorithms based on the linear string
matching automaton of x can be classi�ed
according to the way the adjacency lists are ordered or scanned� For example� the adjacency lists can be
ordered by decreasing length of target� or by the frequency of labels as letters of the pre�x already read�
each adjacency list can also be scanned according to a random processing� �Let us observe that any of
these variations preserves the linear time of the search�� We denote by L�x� the subfamily of algorithms
in S�x� which use the linear string
matching automaton of x to search a given word for occurrences of
x�
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Theorem ���� Given x � A�
 consider an algorithm � in L�x�
 and an input of non�zero length n� In
the comparison model
 � performs no more than �n� � letter comparisons
 and compares each of the n
letter of the input less than minf� � blog� jxjc� card�A�g times�

Proof� This is similar to the proof of Theorem ���� The term ���� of the �n� � bound results from the
fact that we can assume that at least one transition by a null edge of M�A�x� is simulated �the edge
�qk��� ak� qk� of Lemma ����� ut

The �n� � bound of Theorem ��� is also the bound reached by the algorithm of Section � when ab

is a pre�x of the only word of the dictionary and the input is in a�� However� this worst
case bound
can be lowered in L�x�� using the special strategy described in the following statement for computing
transitions�

Theorem ���� Given x � A�
 consider an algorithm � in L�x� that applies the following strategy	 to
compute a transition from any state p
 scan the edges outgoing p in such a way that the forward edge �if
any� is scanned last� Then
 in the comparison model
 � executes no more than b�� � ��jxj�� nc letter
comparisons on any input of length n�

Proof� Let �p� a� q� be a backward or null edge of M�A�x�� The number of comparisons while executing
the series of transitions from q to q via p is bounded by sex�p� q�� ��p �� x�� By application of Proposi

tion ���� we obtain that at most �����jxj�� �jpj� jqj��� comparisons are performed during this series
of transitions� Then we apply Lemma ��� and obtain the expected bound� ut

For a given length m of patterns� the delay minf� � blog�mc� card�A�g �Theorem ���� and the
coe�cient �� ��m �Theorem ��	� are optimal quantities� This is proved by the next two propositions�

Proposition ���� Consider the comparison model� Then
 for each m � �
 for each n � m
 there exist
x � Am and y � An such that any algorithm in S�x� performs at least minf�� blog�mc� card�A�g letter
comparisons in the worst�case on some letter of the searched word y�

Proof� De�ne recursively the mapping ��A� 	 A� by ��ua� � ��u� �a � ��u� for each �u� a� � A��A and
���� � �� �For instance� we have ��abcd� � abacabadabacaba��

Set k � minf��blog�mc� card�A�g� choose k pairwise distinct letters� say a�� a�� � � � � ak� and assume
that ��a�a� � � �ak���ak is a pre�x of x� If ��a�a� � � �ak��� is the already read pre�x of y� the algorithm
can suppose that an occurrence of x starts at one of the positions in the form �k��� � � 	 � k� Hence�
the algorithm performs never less than k letter comparisons at position �k�� in the worst
case� ut
Proposition ��	� Consider the comparison model� Then
 for each m � �
 for each n � �
 there exist
x � Am and y � An such that any algorithm in S�x� performs at least b�����m��nc letter comparisons
in the worst�case when searching y�

Proof� Assume that x � ab
m�� and y � Pref ��afa� bgm������ Then let j� � � j � n� be the current

position on y� and let v be the longest su�x of y�y� � � �yj�� that is also a proper pre�x of x�
If v �� �� the algorithm has to query both if yj � a and if yj � b in the worst
case� in order to be

able to report later an occurrence of x at position either j or j�jvj� Otherwise v � �� and the algorithm
can just query if yj � a� But� according to the de�nition of y� the second case� namely v � �� may occur
only when j � � �modm�� Therefore� the number of letter comparisons performed on y is then never
less than �n� dn�me � b�� � ��m� � nc in the worst
case� ut

	� Su
x automata

��� Outline

The su�x automaton of a word x is de�ned as the minimal deterministic �non necessarily complete�
automaton that recognizes the ��nite� set of su�xes of x� It is denoted by M�Su� �x�� according to
notations of Section ��

An example of su�x automaton is displayed in Figure 	���
The automatonM�Su� �x�� can be used as an index on x to solve the following problem�
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Fig� 
��� The minimal deterministic automaton recognizing the su�xes of aabbabb�

Problem ���� �Index problem�� Given a word x� preprocess it in order to locate all occurrences of any
word y in x�

An alternative solution to the problem is to implement data structures techniques based on a rep

resentation of the set of su�xes of x by compact tries� This structure is known as the su�x tree of
x�

The su�x automaton provides another solution to the string
matching problem �see Section �� since
it can also be used to search a word y for factors of x� This yields a space e�cient solution to the search
for rotations �Section 	��� of a given word�

The surprising property of su�x automata is that their size is linear although the number of factors
of a word can be quadratic in the length of the word� The construction of su�x automata is also linear
on �xed alphabets�

Main Theorem ���� The size of the su�x automaton of a word x is O�jxj�� The automaton can be
implemented in time O�jxj � log card�A�� and O�jxj� extra�space�

The implementation which is referred to in the theorem is based on adjacency lists� As in Section ��
if we allow more extra
space� the time complexity reduces to O�jxj�� This is valid also for Theorems 	��
and 	��� Propositions 	��� 	��� 	��� 	��� and 	���

We �rst review in Section 	�� properties of su�x automata that are useful to design a construction
method� At the same time� we provide exact bounds on the size of the automata� These results have
consequences on the running time of the method� Section 	�� is devoted to the construction of su�x
automata itself� The same approach is presented in Section 	�� for factor automata� Sections 	�� and
	�� show how these automata can be used either as indexes or as string
matching automata�

��� Sizes and properties

����� End
positions� Right contexts according to Su� �x� satisfy a few properties stated in the next
lemmas and used later in the chapter� The �rst remark concerns the context of a su�x of a word�

Lemma ���� Let u� v � A�� If u � Su� �v�
 then v��Su� �x� � u��Su� �x��

Proof� If v��Su� �x� � � the inclusion trivially holds� Otherwise� let z � v��Su� �x�� Then� vz � Su� �x�
and� since u � Su� �v�� uz � Su� �x�� So� z � u��Su� �x�� ut

Right contexts satisfy a kind of converse statement� To formalize it� we introduce the function
endposx�Fact�x�	 N de�ned for each word u by

endposx�u� � minfjwj j w is a pre�x of x and u is a su�x of wg�
The value endposx�u� marks the ending position of the �rst �or leftmost� occurrence of u in x�

Lemma ���� Let u� v � Fact�x�� If u �Su� �x� v
 we have the equality endposx�u� � endposx�v�
 which
is equivalent to say that one of the words u and v is a su�x of the other�

Proof� Let y� z � A� be such that x � yz and u � Su� �y�� We assume in addition that jyj � endposx�u��
Then z is the longest word of u��Su� �x�� The hypothesis implies that z is also the longest word of
v��Su� �x�� which shows that jyj � endposx�v�� In this situation� u and v are both su�xes of y� which
proves that one of them is a su�x of the other� ut
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Another often used property of the syntactic congruence associated with Su� �x� is that it partitions
the su�xes of factors into intervals �with respect to the lengths of su�xes��

Lemma ���� Let u� v� w � Fact�x�� Then
 if u � Su� �v�
 v � Su� �w�
 and u �Su� �x� w
 we have
u �Su� �x� v �Su� �x� w�

Proof� By Lemma 	��� we have the inclusions w��Su� �x� � v��Su� �x� � u��Su� �x�� But then� the
equality u��Su� �x� � w��Su� �x� implies the conclusion of the statement� ut

A consequence of the next property is that the direct inclusion of right contexts relative to Su� �x�
induces a tree structure on them� In the tree� the parent link corresponds to the proper direct inclusion�
This link is discussed in Section 	���� where it is called the �su�x function��

Corollary ���� Let u� v � A�� Then
 one of the three following conditions holds	

�i� u��Su� �x� � v��Su� �x��
�ii� v��Su� �x� � u��Su� �x��
�iii� u��Su� �x� 
 v��Su� �x� � ��

Proof� We just have to show that if u��Su� �x� 
 v��Su� �x� �� �� then we have the inclusion
u��Su� �x� � v��Su� �x� or the inclusion v��Su� �x� � u��Su� �x�� Let z � u��Su� �x� 
 v��Su� �x��
Then� uz and vz are su�xes of x� So� u and v are su�xes of xz��� which implies that one of the words
u and v is a su�x of the other� Therefore� the conclusion follows by Lemma 	��� ut
����� Su�x function� We consider the function sx�Fact�x� 	 Fact�x� de�ned for each nonempty
word v in Fact�x� by

sx�v� � the longest u � Su� �v� such that u ��Su� �x� v�

Regarding Lemma 	��� this is equivalent to

sx�v� � the longest u � Su� �v� such that v��Su� �x� � u��Su� �x��

The function sx is called the su�x function relative to x� An obvious consequence of the de�nition is
that sx�v� is a proper su�x of v� The next lemma shows that the su�x function sx induces what we
call a �su�x link� on states of M�Su� �x���

Lemma ���� Assuming x �� �
 let u� v � Fact�x�nf�g� If u �Su� �x� v
 then sx�u� � sx�v��

Proof� FromLemma	�� we can assume without loss of generality that u � Su� �v�� The word u cannot be
a su�x of sx�v�� because Lemma 	�� would then imply sx�v���Su� �x� � v��Su� �x�� which contradicts
the de�nition of sx�v�� Therefore� sx�v� is a su�x of u� Since� by de�nition� it is the longest su�x of v
non equivalent to it� it is equal to sx�u�� ut
Lemma ��	� If x �� �
 sx�x� is the longest su�x of x that occurs at least twice in x�

Proof� The set x��Su� �x� is equal to f�g� Since x and sx�x� are not equivalent� the set sx�x�
��Su� �x�

contains some nonempty word z� Therefore� sx�x�z and sx�x� are su�xes of x� which proves that sx�x�
occurs at least twice in x� Any su�x w of x� longer than sx�x�� satis�es w

��Su� �x� � x��Su� �x� � f�g
by de�nition of sx�x�� Thus� w occurs only as a su�x of x� which ends the proof� ut

The next lemma shows that the image of a factor of x by the su�x function is a word of maximum
length in its own congruence class� This fact is needed in Section 	�� where the su�x automaton is used
as a matching automaton�

Lemma ���� Assuming x �� �
 let u � Fact�x�nf�g� Then
 any word equivalent to sx�u� is a su�x of
sx�u��

Proof� Let w � sx�u� and v �Su� �x� sx�u�� The word w is a proper su�x of u� If the conclusion of the
statement is false� Lemma 	�� insures that w is a proper su�x of v� Let z � u��Su� �x�� Since w is a
su�x of u and is equivalent to v� we have z � w��Su� �x� � v��Su� �x�� Therefore� u and v are both
su�xes of xz��� which implies that one of them is a su�x of the other� But this contradicts either the
de�nition of w� or the conclusion of Lemma 	��� This proves that v is necessarily a su�x of w� ut
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����� State splitting� In this section we present the properties that yield to the on
line construction of
su�x automata described in Section 	��� This is achieved by deriving relations between the congruences
�Su� �w� and �Su� �wa� for any couple �w� a� � A� �A� The �rst property� stated in Lemma 	��� is that
�Su� �wa� is a re�nement of �Su� �w�� The next lemma shows how right contexts evolves�

Lemma ���� Let w � A� and a � A� For each u � A�
 we have	

u��Su� �wa� �

�
u��Su� �w�a � f�g� if u � Su� �wa�

u��Su� �w�a� otherwise�

Proof� Note �rst that � � u��Su� �wa� is equivalent to u � Su� �wa�� So� it remains to prove
u��Su� �wa�nf�g � u��Su� �w�a�

Let z be a nonempty word in u��Su� �wa�� This means uz � Su� �wa�� The word uz can then be
written uz�a with uz� � Su� �w�� Thus� z� � u��Su� �w�� and z � u��Su� �w�a�

Conversely� Let z be a �nonempty� word in u��Su� �w�a� It can be written z�a for some z� �
u��Su� �w�� Therefore� uz� � Su� �w�� which implies uz � uz�a � Su� �wa�� that is z � u��Su� �wa��

ut
Lemma ���� Let w � A� and a � A� The congruence �Su� �wa� is a re�nement of the congruence
�Su� �w�
 that is
 for each u� v � A�
 u �Su� �wa� v implies u �Su� �w� v�

Proof� We assume u �Su� �wa� v� that is� u
��Su� �wa� � v��Su� �wa�� and prove u �Su� �w� v� that is�

u��Su� �w� � v��Su� �w�� We only show that u��Su� �w� � v��Su� �w� because the reverse inclusion
follows by symmetry�

If u��Su� �w� is empty� the inclusion trivially holds� Otherwise� let z � u��Su� �w�� This is equivalent
to uz � Su� �w�� which implies uza � Su� �wa�� The hypothesis gives vza � Su� �wa�� and thus
vz � Su� �w� or z � v��Su� �w�� which achieves the proof� ut

Given a word w� the congruence �Su� �w� partitions A
� into classes� And Lemma 	�� remains to say

that these classes are union of classes according to �Su� �wa�� a � A� It turns out that only one or two
classes according to �Su� �w� split into two sub
classes to get the partition induced by �Su� �wa�� One of
the class that splits is the class of words not occurring in w� It contains the word wa itself that gives rise
to a new class and a new state of the su�x automaton �see Lemma 	���� Theorem 	�� and its corollaries
exhibit conditions under which another class also splits and how it splits�

Lemma ��
� Let w � A� and a � A� Let z be the longest su�x of wa occurring in w� If u is a su�x of
wa such that juj � jzj
 u �Su� �wa� wa�

Proof� This is a straightforward consequence of Lemma 	��� ut
Theorem ���� Let w � A� and a � A� Let z be the longest su�x of wa occurring in w� Let z� be the
longest factor of w such that z� �Su� �w� z� For each u� v � Fact�w�
 we have	

u �Su� �w� v and u ��Su� �w� z �� u �Su� �wa� v�

Furthermore
 for each u � A�
 we have	

u �Su� �w� z ��
�
u �Su� �wa� z� if juj � jzj

u �Su� �wa� z

�� otherwise�

Proof� Let u� v � Fact�w� be such that u �Su� �w� v� that is� u
��Su� �w� � v��Su� �w�� We �rst assume

u ��Su� �w� z and prove u �Su� �wa� v� that is u
��Su� �wa� � v��Su� �wa��

By Lemma 	�	� we just have to prove that u � Su� �wa� is equivalent to v � Su� �wa�� Indeed� it is
even su�cient to prove that u � Su� �wa� implies v � Su� �wa� because the reverse implication comes
by symmetry�

Assume then that u � Su� �wa�� Since u � Fact�w�� u is a su�x of z� by de�nition of z� So� we can
consider the largest integer k � � such that juj � jswk�z�j� Note that sw

k�z� is a su�x of wa �as z is��
and that Lemma 	�� insures that u �Su� �w� sw

k�z�� So� v �Su� �w� sw
k�z� by transitivity�
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Since u ��Su� �w� z� we have that k � �� Thus� Lemma 	�� implies that v is a su�x of swk�z�� and
then that v is a su�x of wa as expected� This proves the �rst part of the statement�

Consider now a word u such that u �Su� �w� z�
If juj � jzj� to prove u �Su� �wa� z� using the above argument� we just have to show that u � Su� �wa�

because z � Su� �wa�� Indeed� this is a simple consequence of Lemma 	���
Conversely� assume that juj � jzj� When such a word u exists� z� �� z and jz�j � jzj �z is a proper

su�x of z��� Therefore� by the de�nition of z� u and z� are not su�xes of wa� Using again the above
argument� this shows that u �Su� �wa� z

��
This proves the second part of the statement and ends the proof� ut

Corollary ���� Let w � A� and a � A� Let z be the longest su�x of wa occurring in w� Let z� be
the longest word such that z� �Su� �w� z� If z

� � z
 then
 for each u� v � Fact�w�
 u �Su� �w� v implies
u �Su� �wa� v�

Proof� The conclusion follows directly from Theorem 	�� if u ��Su� �w� z� Otherwise� u �Su� �w� z� and
by the hypothesis on z and Lemma 	��� we get juj � jzj� Thus� Theorem 	�� again gives the same
conclusion� ut
Corollary ���� Let w � A� and a � A� Assume that letter a does not occur in w� Then
 for each
u� v � Fact�w�
 u �Su� �w� v implies u �Su� �wa� v�

Proof� Since a does not occur in w� the word z of Corollary 	�� is the empty word� This word is the
longest word in its own congruence class� So� the hypothesis of Corollary 	�� holds� Therefore� the same
conclusion follows� ut
����� Sizes of su�x automata� We discuss the size of su�x automata both in term of number of
states and number of edges� We show that the global size of M�Su� �x�� is O�jxj�� The set of states
and the set of edges of M�Su� �x�� are respectively denoted by Q and E �without mention of x that is
implicit in statements��

Corollary ���� If jxj � �
 card�Q� � �� and if jxj � �
 card�Q� � �� Otherwise jxj � �� then

jxj� � � card�Q� � �jxj � � and the upper bound is reached only when x is in the form abjxj�� for two
distinct letters a and b�

Proof� The minimum number of states is obviously jxj��� and is reached when x is in the form ajxj for
some a � A� Moreover� we have exactly card�Q� � jxj� � when jxj � ��

Assume now that jxj � �� By Theorem 	��� each symbol xk� � � k � jxj� increases by at most � the
number of states of M�Su� �x�x� � � �xk����� Since the number of states for a word of length � is �� we
get that

card�Q� � � � ��jxj � �� � �jxj � ��

as announced in the statement�
The construction of a word x reaching the upper bound for the number of states ofM�Su� �x�� is a

mere application of Theorem 	�� considering that each letter xk� � � k � jxj� should e
ectively increase
by � the number of states of M�Su� �x�x� � � �xk����� ut

Figure 	�� displays a su�x automaton whose number of states is maximum for a word of length 	�

� � � � 
 � � 


� � �� �� ��

a b b b b b b

b b b b b

b

Fig� 
��� A su�x automaton with the maximum number of states�

Let lengthx�Q 	 N be the function associating to each state q of M�Su� �x�� the length of the
longest word u in the congruence class q� It is also the length of the longest path from the initial state
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to q� �This path is labeled by u�� Longest paths form a spanning tree on M�Su� �x�� �a consequence
of Lemma 	���� Transitions that belong to that tree are called solid edges� Equivalently� for each edge
�p� a� q� of M�Su� �x��� we have that�

�p� a� q� is solid 
� lengthx�q� � lengthx�p� � ��

This notion is used in the construction of su�x automata to test the condition stated in Theorem 	���
We use it here to derive exact bounds on the number of edges of su�x automata�

Lemma ����� Assuming jxj � �
 card�E� � card�Q� � jxj � ��

Proof� Consider the spanning tree of longest paths from the initial state inM�Su� �x��� The tree contains
card�E� � � edges of M�Su� �x��� which are the solid edges�

To each non
solid edge �p� a� q� we associate the su�x uav of x de�ned as follows� u is the label of
the longest path from the initial state to p� and v is the label of the longest path from q to a terminal
state� Note that� doing so� two di
erent non
solid edges are associated with two di
erent su�xes of x�
Since su�xes x and � are labels of paths in the tree� they are not considered in the correspondence�
Thus� the number of non
solid edges is at most jxj � ��

Counting together the number of both kinds of edges gives the expected upper bound� ut
Corollary ��	� If jxj � �
 card�E� � �� if jxj � �
 card�E� � �� and if jxj � �
 � � card�E� � ��
Otherwise jxj � �� then jxj � card�E� � �jxj � �
 and the upper bound is reached when x is in the form
abjxj��c
 for three pairwise distinct letters a
 b
 and c�

Proof� The lower bound is obvious� and reached when x is in the form ajxj for some a � A� The upper
bound can be checked by hand for the cases where jxj � ��

Assume now that jxj � �� By Corollary 	�� and Lemma 	��� we have card�E� � �jxj� � � jxj � � �
�jxj � �� The quantity �jxj � � is the maximum number of states obtained only when x is in the form
abjxj�� for two distinct letters a and b� But the number of edges in M�Su� �abjxj���� is only �jxj � ��
So� card�E� � �jxj � ��

The automatonM�Su� �abjxj��c��� for three pairwise distinct letters a� b and c� has �jxj � � states
and exactly �jxj � � edges composed of �jxj � � solid edges and jxj � � non
solid edges� ut

Figure 	�� displays a su�x automaton whose number of edges is maximum for a word of length 	�

� � � � 
 � � 


� � �� ��

a b b b b b c

b b b b

b

c

c

c

c

c

Fig� 
��� A su�x automaton with the maximum number of edges�

As a conclusion of Section 	��� we get the following statement� direct consequence of Corollaries 	��
and 	���

Theorem ���� The total size of the su�x automaton of a word is linear in the length of the word�

��� Construction

We describe in Sections 	����� 	���� and 	���� an on
line construction of the su�x automatonM�Su� �x���
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����� Su�x links and su�x paths� The construction of M�Su� �x�� follows Theorem 	�� and
its corollaries stated in Section 	��� Conditions that appear in these statements are checked on the
automaton with the help of a function de�ned on its states and called the �su�x link�� It is a failure
function in the sense of Section ���� and is used with this purpose in Section 	���

Let �Q� i� T�E� �M�Su� �x�� and � be the corresponding transition function� Let p � Qnfig� State
p is a class of factors of x congruent with respect to �Su� �x�� Let u be any word in the class of p �u �� �
because p �� i�� Then� the su�x link of p is the congruence class of sx�u�� By Lemma 	�� the value sx�u�
is independent of the word u chosen in the class p� which makes the de�nition coherent� We denote by
fx the function assignating to each state p its congruence class sx�u��

Su�x links induce by iteration �su�x paths� in M�Su� �x��� Note that if q � fx�p�� then
lengthx�q� � lengthx�p�� Therefore� the sequence

�p� fx�p�� fx
��p�� � � ��

is �nite and ends with the initial state i� It is called the su�x path of p�
We denote by lastx the state of M�Su� �x�� that is the class of x itself� State lastx has no outgoing

edge �otherwise M�Su� �x�� would recognize words longer than x�� The su�x path of lastx� i�e�

�lastx� fx�lastx�� fx
��lastx�� � � ���

plays an important role in the on
line construction� It is used to test e�ciently conditions appearing in
statements of the previous section�

Proposition ���� Let u � Fact�x�nf�g and set p � ��i� u�� Then
 for any integer k � � for which
sx

k�u� is de�ned
 fx
k�p� � ��i� sx

k�u���

Proof� The proof is by induction on k�
For k � �� the equality holds by hypothesis�
Next� let k � � such that sx

k�u� is de�ned and assume that fx
k���p� � ��i� sx

k���u��� By de�nition
of fx� fx�fx

k���p�� is the congruence class of the word sx�sx
k���u��� Therefore� fx

k�p� � ��i� sxk�u�� as
expected� ut
Corollary ���� Terminal states of M�Su� �x��
 the states in T 
 are exactly the states of the su�x path
of state lastx�

Proof� Let p be a state of the su�x path of lastx� Then� p � fx
k�lastx� for some integer k � �� By

Proposition 	��� since lastx � ��i� x�� we have p � ��i� sxk�x��� Since sxk�x� is a su�x of x� p � T �
Conversely� let p � T � So� for some u � Su� �x�� p � ��i� u�� Since u � Su� �x�� we can consider

the largest integer k � � such that juj � jsxk�x�j� By Lemma 	�� we get u �Su� �x� sx
k�x�� Thus� p �

��i� sx
k�x�� by de�nition of M�Su� �x��� Then� Proposition 	�� applied to x shows that p � fx

k�lastx��
which proves that p belongs to the su�x path of lastx� ut
����� On
line construction� This section presents an on
line construction of su�x automata� At
each stage of the construction� just after processing a pre�x x�x� � � �x� of x� the su�x automaton
M�Su� �x�x� � � �x��� is built� Terminal states are implicitly known by the su�x path of lastx�x����x� �see
Corollary 	���� The state lastx�x����x� is explicitly represented by a variable in the function building the
automaton�

Two other elements are also used� Length and F � The table Length represents the function lengthx
de�ned on states of the automaton� All edges are solid or non
solid according to the de�nition of
Section 	�� that relies on function lengthx� Su�x links of states �di
erent from the initial state� are
stored in a table denoted by F that stands for the function fx� The implementation ofM�Su� �x�� with
these extra features is discussed in the next section�

The on
line construction in Figure 	�� is based on procedure SA�Extend given in Figure 	��� The
latter procedure processes the next letter� say x�� of the word x� It transforms the su�x automaton
M�Su� �x�x� � � �x����� already built into the su�x automatonM�Su� �x�x� � � �x����

We illustrate how procedure SA�Extend processes the current automaton through three examples�
Let us consider that x�x� � � �x��� � ccccbbccc� and let us examine three possible cases according to
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SuffixAutomaton�x�
let � be the transition function of �Q� i� T�E�

� �Q�E� � �����
� i� State�Creation
� Length�i� � �

 F �i�� nil

� last � i
� for � from � up to jxj

 loop SA�Extend���
� T � �

� p� last
�� loop T � T � fpg
�� p� F �p�
�� while p �� nil

�� return ��Q� i� T�E��Length� F �

Fig� 
��� On�line construction of the su�x automaton of a word x�

SA�Extend���
� a� x�

� newlast � State�Creation

� Length�newlast� � Length�last� � �

 p� last

� loop E � E � f�p� a� newlast�g
� p� F �p�

 while p �� nil and ��p� a� � nil
� if p � nil

� then F �newlast�� i
�� else q � ��p� a�
�� if Length�q� � Length�p� � �
�� then F �newlast�� q
�� else q� � State�Creation

�
 for each letter b such that ��q� b� �� nil

�� loop E � E � f�q�� b� ��q� b��g
�� Length�q��� Length�p� � �
�
 F �newlast�� q�

�� F �q�� � F �q�
�� F �q�� q�

�� loop E � E � f�p� a� q�g� f�p� a� q��g
�� p� F �p�
�� while p �� nil and ��p� a� � q
�� last � newlast

Fig� 
��� From M�Su� �x�x� � � �x����� to M�Su� �x�x� � � �x����
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a � x�� namely a � d� a � c� and a � b� The su�x automaton of x�x� � � �x��� is depicted in Fig

ure 	��� Figures 	�	� 	��� and 	�� display respectively M�Su� �ccccbbcccd��� M�Su� �ccccbbcccc��� and
M�Su� �ccccbbcccb���

� � � � 
 � � 
 � �

��

c c c c b b c c c

b

b

b

b

b
c

Fig� 
�	� M�Su� �ccccbbccc���

During the execution of the �rst loop of the procedure� state p runs through a part of the su�x path
of last� At the same time� edges labeled by a are created from p to the newly created state� unless such
an edge already exists in which case the loop stops�

If a � d� the execution of the loop stops at the initial state� The edges labeled by d start at terminal
states ofM�Su� �ccccbbccc��� This case corresponds to Corollary 	��� The resulting automaton is given
in Figure 	�	�

� � � � 
 � � 
 � �

��

��
c c c c b b c c c d

b

b

b

b

b
c

d

d

d

d

Fig� 
�
� M�Su� �ccccbbcccd���

If a � c� the loop stops on state � � F �last� �of the automaton depicted in Figure 	��� because an
edge labeled by c is de�ned on it� Moreover� the edge is solid� so� we get the su�x link of the new state�
Nothing else should be done according to Corollary 	��� This gives the automaton of Figure 	���

� � � � 
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 � �
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c c c c b b c c c c

b
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c

Fig� 
��� M�Su� �ccccbbcccc���

Finally� when a � b� the loop stops on state � � F �last� for the same reason� but the edge labeled
by b from � is non
solid� The word cccb is a su�x of the new word ccccbbcccb but ccccb is not� Since
these two words reach state �� this state is duplicated into a new state that becomes a terminal state�
Su�xes ccb and cb are re
directed to this new state� according to Theorem 	��� We get the automaton
of Figure 	���
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Fig� 
��� M�Su� �ccccbbcccb���

Theorem ���� Function SuffixAutomaton builds the su�x automaton of any given word x�

Proof� The proof is by induction on the length of x� It heavily relies on the properties stated previously�
If x � �� the function builds an automaton with only one state that is both initial and terminal� No

edge is de�ned� So� the automaton recognizes the language f�g� which is Su� �x��
Otherwise x �� �� Let w � A� and a � A be such that x � wa� We assume� after preprocessing w�

that the current values of Q and E are respectively the set of states and of edges of M�Su� �w��� that
last is the state ��i� w�� that Length�r� � lengthw�r� for each r � Q� and that F �r� � fw�r� for each
r � Qnfig� We prove �rst that procedure SA�Extend correctly updates sets Q and E� variable last� and
tables Length and F � Then� we show that terminal states are eventually correctly marked by function
SuffixAutomaton�

The variable p of procedure SA�Extend runs through the states of the su�x path of last of
M�Su� �w��� The �rst loop creates edges by letter a onto the new created state newstate according
to Lemma 	��� and we have the equality Length �newlast� � lengthx�newlast��

When the loop stops� three exclusive cases can be distinguished�

�i� p is unde�ned�
�ii� �p� a� q� is a solid edge�
�iii� �p� a� q� is a non
solid edge�

Case �i�� The letter a does not occur in w� so� fx�newlast� � i� Then� we have F �newlast� �
fx�newlast�� For any other state r� fw�r� � fx�r� by Corollary 	��� Then� again F �r� � fx�r� at the end
of execution of procedure SA�Extend�

Case �ii�� Let u be the longest word such that ��i� u� � p� By induction and by Lemma 	��� we have
juj � lengthx�p� � Length�p�� The word ua is the longest su�x of x occurring in w� Then� fx�newlast� �
q� and thus F �newlast� � fx�newlast��

Since the edge �p� a� q� is solid� using the induction again� we obtain juaj � Length �q� � lengthx�q��
which shows that words congruent to ua according to �Su� �w� are not longer than ua� Therefore�
Corollary 	�� applies with z � ua� And as in case �i�� F �r� � fx�r� for each state di
erent than newlast�

Case �iii�� Let u be the longest word such that ��i� u� � p� The word ua is the longest su�x of wa
occurring in w� Then� fx�newlast� � q� and thus F �newlast� � fx�newlast��

Since the edge �p� a� q� is non
solid� ua is not the longest word in its own congruence class according
to �Su� �w�� Theorem 	�� applies with z � ua� and z� the longest word� label of the path from i to q�
The class of ua according to �Su� �w� splits into two classes according to �Su� �x�� They are represented
by states q and q��

Words v shorter than ua and such that v �Su� �w� ua are in the form v�a with v� � Su� �u� �con

sequence of Lemma 	���� Before the execution of the last loop� all these words v satisfy q � ��i� v��
Therefore� after the execution of the loop� they satisfy q� � ��i� v�� as expected from Theorem 	���
Words v longer than ua and such that v �Su� �w� ua satisfy q � ��i� v� after the execution of the loop�
as expected from Theorem 	�� again� It is easy to check that su�x links are correctly updated�

Finally� in the three cases �i�� �ii�� and �iii�� the value of last is correctly updated at the end of
procedure SA�Extend�
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Thus� the induction proves that the sets Q and E� variable last� tables Length and F are correct
after the execution of procedure SA�Extend�

That terminal states are correctly marked during the last loop of function SuffixAutomaton is a
consequence of Corollary 	��� ut
����� Complexity� In order to analyze the complexity of the above construction� we �rst describe
a possible implementation of elements required by the construction� We assume that the automaton is
represented by adjacency lists� Doing so� the operations of adding� updating� and accessing a transition
�computing ��p� a�� take O�log card�A�� time with an e�cient implementation of adjacency lists �see
Section ����� Function fx is implemented by the array F that gives access to fx�p� in constant time�

For the implementation of the solid non
solid quality of edges� we have chosen to use an array�
namely Length� representing function lengthx� as suggested by the description of procedure SA�Extend�
Another possible implementation is to tie a boolean value to edges themselves� Doing so� the �rst edges
created at steps � and �� should be marked as solid� The other edges should be de�ned as non
solid�
This type of implementation do not require the array Length that can be eliminated� But the array can
be used in applications like the one presented in Section 	��� Both types of implementation provide a
constant
time access to the quality of edges�

Theorem ��	� Function SuffixAutomaton can be implemented to work in time O�jxj� log card�A��
within O�jxj� space on each given word x�

Proof� The set of states of M�Su� �x�� and arrays Length and F require O�card�Q�� space� The set of
adjacency lists require O�card�E�� space� Thus� the implementation takes O�jxj� space by Corollaries 	��
and 	���

Another consequence of these corollaries is that all operations executed once for each state or each
edge take O�jxj � log card�A�� on the overall� The same result holds for operations executed once for
each letter of x� So� it remains to prove that the total running time of the two loops of lines ��� and
lines ����� inside procedure SA�Extend is also O�jxj � log card�A���

Assume that procedure SA�Extend is going to update M�Su� �w��� w being a pre�x of x� Let u
be the longest word reaching state p during the test of the loop of lines ���� The initial value of u is
sw�w�� and its �nal value satis�es ua � swa�wa� �if p is de�ned�� Let k be the quantity jwj � juj� which
is the position of the su�x occurrence of u in w� Then� each test strictly increases the value of k during
a single run of the procedure� Moreover� the �nal value of k after a run of the procedure is not greater
than its initial value at the beginning of the next run� Therefore� tests and instructions of that loop are
executed at most jxj times�

We use a similar argument for the loop of lines ����� of procedure SA�Extend� Let v be the longest
word reaching state p during the test of this loop� The initial value of v equals swk�w� for some integer
k � �� and its �nal value satis�es va � swa

��wa� �if p is de�ned�� Then� the position of v as a su�x
of w strictly increases at each test over all runs of the procedure� Again� tests and instructions of that
loop are executed at most jxj times�

Therefore� the accumulated running time of the two loops of lines ��� and lines ����� altogether is
O�jxj � log card�A��� Which ends the proof� ut

��� As indexes

The su�x automaton of a word naturally provides an index on its factors� We consider four basic
operations on indexes� membership� �rst position� number of occurrences� and list of positions� The
su�x automaton also helps computing e�ciently the number of factors in a word� as well as the longest
factor occurring at least twice in a word�

����� Membership�

Problem ���� �Membership problem for Fact�x��� Given w � A�� �nd its longest pre�x that belongs
to Fact�x��

Proposition ���� With M�Su� �x��
 computing the longest pre�x u of a word w such that u � Fact�x�
can be performed in time O�juj � log card�A���
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Proof� Just spell the word w in M�Su� �x�� considering the two implementations described in Sec

tion 	��� Stopping the search on the �rst unde�ned transition gives the longest pre�x u of w for which
��i� u� is de�ned� which means that it is a factor of x� ut
����� First position�

Problem ���� �First �respectively last� position ofw in x�� Given w � Fact�x�� �nd its �rst �respectively
last� position in x�

We assume that w � Fact�x�� This test ��does w belong to Fact�x���� can be performed separately
as in Section 	����� or can be merged with the solution of the present problem�

The problem of �nding the �rst position fpx�w� of w in x is equivalent to computing endposx�w�
because

fpx�w� � endposx�w�� jwj�
Moreover� this is also equivalent to computing the maximum length of right contexts of w in x�

lcx�w� � maxfjzj j z � w��Fact�x�g�
because

fpx�w� � jxj � lcx�w�� jwj�
Symmetrically� �nding the last position lpx�w� of w in x remains to computing the smallest length

scx�w� of its right contexts because

lpx�w� � jxj � scx�w� � jwj�
To be able to answer e�ciently requests on the �rst or last positions of factors of x� we precompute

arrays indexed by states of M�Su� �x�� representing functions lcx and scx� We get the next result�

Proposition ���� The automaton M�Su� �x�� can be preprocessed in time O�jxj� so that the �rst �or
last� position in x of any word w � Fact�x� can be computed in time O�jwj� log card�A�� within O�jxj�
space�

Proof� We consider an array LC de�ned on states of M�Su� �x�� as follows� Let p be a state and u be
such that p � ��i� u�� then� we de�ne LC �p� � lcx�u�� Note that the value of LC �p� does not depend on
the word u because for an equivalent word v� lcx�u� � lcx�v� �by Lemma 	���� The array LC satis�es
the induction relation�

LC �p� �

�
�� if p � lastx�
� � maxfLC �q� j q � ��p� a�� a � Ag� otherwise�

So� the computation of LC can be done during a depth
�rst traversal of the graph ofM�Su� �x��� Since
the total size of the graph is O�jxj� �Theorem 	���� this takes time O�jxj��

To compute fpx�w�� we �rst locate the state p � ��i� w�� and then return jxj � jwj � LC �p�� This
takes the same time as for the membership problem�

To �nd the last occurrence of w in x we consider the array SC that represents the function scx�
If p � ��i� u�� we set SC �p� � scx�u�� which is a coherent de�nition� We then use the next relation to
compute the array during a depth
�rst traversal of M�Su� �x���

SC �p� �

�
�� if p � T �
� �minfSC �q� j q � ��p� a�� a � Ag� otherwise�

After the preprocessing� we get the same complexity as above� This ends the proof� ut
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����� Occurrence number�

Problem ���� �Number of occurrences of w in x�� Given w � Fact�x�� �nd how many times w occurs
in x�

Proposition ���� The automaton M�Su� �x�� can be preprocessed in time O�jxj� so that the number
of occurrences in x of any word w � Fact�x� can be computed in time O�jwj� log card�A�� within O�jxj�
space�

Proof� The number of occurrences of w in x is

cardfz j z � A� and wz � Su� �x�g�
If ��i� w� � p� this is also

cardfz j z � A� and ��p� z� � Tg�
Let NB �p� be this quantity� for any state of M�Su� �x���

The array NB satis�es the recurrence relation�

NB �p� �

�
� �

P
q���p�a��a�A NB �q�� if p � T �P

q���p�a��a�A NB �q�� otherwise�

which shows that the array NB can be computed in time proportional to the size of the automaton
during a depth
�rst traversal of the graph� This takes O�jxj� time�

Afterwards� the problem remains to access NB �p� for p � ��i� w�� �If p is unde�ned� w does not occur
in x�� Computing p takes the time announced in the statement� ut

An argument similar to that of the previous proof gives the computation of the number of factors
occurring in x� i�e� the size of Fact�x�� Indeed� Fact�x� is the particular right context associated with
the initial state of M�Su� �x��� And to compute its size� we evaluate contexts sizes CS �p� of all states
of the automaton using the relation�

CS �p� �

�
�� if p � lastx�
� �

P
q���p�a��a�A CS �q�� otherwise�

This provides a linear
time computation of card�Fact�x�� � CS �i��

����� List of positions�

Problem ��	� �Positions of w in x�� Given w � Fact�x�� produce the list of positions of w in x�

Proposition ��	� The automaton M�Su� �x�� can be preprocessed in time O�jxj� so that the list L of
positions in x of any w � Fact�x� can be computed in time O�jwj� log card�A��card�L�� within O�jxj�
space�

Proof� We just sketch the proof of the statement� The automaton is preprocessed in order to create
shortcuts over states on which exactly one edge is de�ned and that are not terminal states� To do
so� we create a graph structure superimposed on the automaton� The nodes of the graph are either
terminal states or states whose degree is at least two� Arcs of the graph are labeled by the labels of the
corresponding path in the automaton� From a given state� labels of outgoing arcs start with pairwise
distinct letters �because the automaton is deterministic��

Once the node q associated with w �or an extension of it� is found in the graph� the list of positions
of w in x is computed by traversing the subgraph rooted at q� Consider the tree of the traversal� Its
internal nodes have at least two children� and its leaves are associated with distinct positions �some
positions can correspond to internal nodes�� Therefore� the number of nodes of the tree is less than
�� card�L�� which proves that the time of the traversal is O�card�L��� The extra running time is used
to �nd q� ut
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����	 Longest repeated factor� There are two dual problems e�ciently solvable with the su�x
automaton of x�

� �nd a longest factor repeated in x�
� �nd a shortest factor occurring only once in x�

Problem ���� �Longest repeated factor in x�� Produce a longest word u � Fact�x� that occurs twice
in x�

If the table NB used to compute the number of occurrences of a factor is already computed� the
problem is equivalent to �nd the deepest state p in M�Su� �x�� for which NB �p� � �� The label of the
path from the initial state to p is a solution to the problem� In fact� the problem can be solved without
any use of the table NB� We just consider the deepest state p which satis�es one of the two conditions�

�i� the degree of p is at least two�
�ii� p is a terminal state and the degree of p is at least one�

Doing so� no preprocessing on M�Su� �x�� is even needed� which gives the following result�

Proposition ���� With M�Su� �x��
 computing a longest repeated factor of x can be performed in time
O�jxj��

Given a longest repeated factor u of x� ua is a factor of x for some letter a� It is clear that this word
is a shortest factor occurring once only in x� i�e�� this word is a solution to the dual problem� Hence�
the proposition also holds for the second problem�

��	 As string
matching automata

The su�x automatonM�Su� �x�� of x can be used to solve the string
matching problem� to locate the
occurrences of x in a word y� The search procedure behaves like the search phase of algorithmMatcher

�see Section �� that processes y in an on
line manner� The existence of failure links in M�Su� �x�� is
essential for this application� which gives them their name� The search procedure is a consequence of a
generic procedure� given Figure 	���� that can be used for other purposes�

��	�� Ending factors� Procedure EndingFactors of Figure 	��� computes the longest factor of x
ending at each position in y� or more exactly the length of this factor� More precisely� we de�ne for each
k � f�� � � � � jyjg the number

	k � maxfjwj j w � Su� �y�y� � � �yk� 
 Fact�x�g�
The procedure EndingFactors performs an on
line computation of the sequence �	k���k�jyj of lengths
of longest ending factors� The output is given as a word on the alphabet f�� � � � � jxjg� Function lengthx
of Section 	�� �implemented via table Length� is used to reset properly the current length just after a
su�x link has been traversed�

The core of procedure EndingFactors is the computation of transitions with the failure table F
�implementing the su�x link fx�� similarly as in the general method described in Sections ��� and ����

Theorem ���� Procedure EndingFactors computes the lengths of longest ending factors of x in y
in time O�jyj � log card�A��� It executes less than �jyj transitions in M�Su� �x��
 and requires O�jxj�
space�

Proof� See the proof of Theorem ���� ut
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EndingFactors��Q� i� T� E��Length� F�y�
let � be the transition function of �Q� i� T� E�

� ��� p� � ��� i�
� L� �
� for letter a from �rst to last letter of y

 loop if ��p� a� �� nil
� then ��� p� � ��� �� ��p� a��
� else loop p� F �p�

 while p �� nil and ��p� a� � nil

� if p �� nil
� then ��� p� � �Length�p� � �� ��p� a��

�� else ��� p� � ��� i�
�� L� L � �
�� return L

Fig� 
���� Computing lengths of factors of a word x ending at all positions in a word y� with �Q� i� T�E� �
M�Su� �x���

��	�� Optimization of su�x links� Indeed� instead of the su�x link fx� we rather use another link�
denoted by �fx� that optimizes the delay of searches� Its de�nition is based on transitions de�ned on
states of the automaton� and parallels what is done in Section ����

The �follow set� of a state q of M�Su� �x�� is

Followx�q� � fa j a � A� ��q� a� is de�nedg�
Then� �fx�q� is de�ned by the relation�

�fx�q� �

�
fx�q�� if Followx�fx�q�� � Followx�q��
�fx�fx�q��� otherwise�

Note that �fx�q� can be left unde�ned with this de�nition�

A property of Followx sets simpli�es the computation of �fx� In the su�x automaton we always have
Followx�q� � Followx�fx�q��� This is because fx�q� corresponds to a su�x v of any word u for which
q � ��i� u�� Then� any letter following u in x also follows v �see Lemma 	���� And this property transfers

to follow sets of q and fx�q� respectively� With this remark� the de�nition of the failure function �fx can
be equivalently stated as�

�fx�q� �

�
fx�q�� if the degrees of q and of fx�q� are di
erent�
�fx�fx�q��� otherwise�

Thus� the computation of �fx has only to consider degrees of states of the automatonM�Su� �x��� and
can be executed in linear time�

Proposition ���� For procedure EndingFactors using a table
 say �F 
 implementing the su�x link �fx
instead of the table F 
 the delay is O�card�A���

Proof� This is a consequence of�

Followx�q� � Followx� �fx�q�� � A

for any state q for which �fx�q� is de�ned� ut
��	�� Searching for rotations� The knowledge of the sequence of lengths �	k���k�jyj leads to several
applications such as searching for x in y� computing lcf �x� y�� the maximum length of a factor common
to x and y� or computing the subword distance between two words�

d�x� y� � jxj� jyj � �� lcf �x� y��

The computation of positions of x in y relies on the simple observation�

	k � jxj 
� x occurs at position k � jxj in y�

The same remark applies as well to design an e�cient solution to the next problem� A rotation �or
a conjugate� of a word u is a word in the form wv� w� v � A�� when u � vw�
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Problem ���� �Searching for rotations�� Given x � A�� locate all occurrences of rotations of x in any
given word y�

A �rst solution to the problem is to apply the algorithm of Section � to the set of rotations of
x� However� the space required by this solution can be quadratic in jxj like can be the size of the
corresponding trie� A solution based on su�x automata keeps the memory space linear�

Proposition ���� After a preprocessing on x in time O�jxj � log card�A��
 positions of occurrences of
rotations of x occurring in y can be computed in time O�jyj � log card�A�� within O�jxj� space�
Proof� Note that the factors of length jxj of the word xx are all the rotations of x� And that longer
factors have a rotation of x as a su�x� �In fact� the word xuA��� where u is the shortest period of x�
satis�es the same property��

The solution consists in running the procedure EndingFactors with the automatonM�Su� �xx��
after adding this modi�cation� retain position k � jxj each time 	k � jxj� Indeed� 	k � jxj if and only if
the longest factor w of xx ending at position k is not shorter than x� Thus� the su�x of length jxj of w is
a rotation of x� The complexity of the new procedure is the same as that of procedure EndingFactors�

ut

��� Factor automata

The factor automaton of a word x is the minimal deterministic automaton recognizing Fact�x�� It is
denoted by M�Fact�x��� It is clear that the su�x automaton M�Su� �x�� recognizes Fact�x� if all its
states are transformed into terminal states� But the automaton so obtained is not always minimal� For
example� the factor automaton of aabbabb� shown in Figure 	���� is smaller than the su�x automaton
of the same word �Figure 	���� In this section we brie�y review few elements related to factor automata�
their relation to su�x automata� their sizes� and their construction�

� � � � 
 � � 


��

a a b b a b b

b

b

a

b

Fig� 
���� Minimal deterministic automaton recognizing the factors of aabbabb�

����� Relation to su�x automata� The construction of factor automata by an on
line algorithm
is slightly more tricky than the construction of su�x automata� The latter can be simply deduced
from a procedure that builds factor automata as follows� To get M�Su� �x��� �rst build M�Fact�x����
extending alphabet A by letter �� then set as terminal states only those states from which an edge by
letter � outgoes� and �nally remove all edges by letter � and the state they reach� The correctness of
this procedure is straightforward� but is also a consequence of Theorem 	�	 below�

Conversely� the construction of M�Fact�x�� from M�Su� �x�� requires a minimization procedure�
This is related to the non
solid path in M�Fact�x�� considered in the on
line construction� and that is
presented here�

Let us denote by �x the su�x function corresponding to the right syntactic congruence associated
with Fact�x� �and denoted by �Fact�x� in this chapter�� Let z � �x�x� �the longest su�x of x occurring
at least twice in it�� Let �pj���j�jzj be the sequence of states of M�Fact�x�� de�ned by p� � i� and� for
� � j � jzj� pj � ��pj��� zj�� where � is the transition function of M�Fact�x��� and i its initial state�
Let k� � � k � jzj� be the smallest integer for which �pk� zk��� pk��� is a non
solid edge �setting k � jzj
if no such edge exists�� Then� the non
solid path of M�Fact�x�� is composed of edges

�pk� zk��� pk���� �pk��� zk��� pk���� � � � � �pjzj��� zjzj� pjzj��
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In equivalent terms� the word z is decomposed into uv� where u � z�z� � � � zk and v � zk��zk�� � � �zjzj�
The word u is the longest pre�x of z which is the longest word in its own congruence class according
to �Fact�x�� This implies that all shorter pre�xes of z satisfy the same condition while longer pre�xes
do not� The word v labels the non
solid path ofM�Fact�x��� It is the empty word if the non
solid path
contains no edge�

With the above notion we can describe an alternative method to deriveM�Su� �x�� fromM�Fact�x���
It consists of �rst buildingM�Fact�x��� and then duplicating states pk��� pk��� � � � � pjzj� of the non
solid
path ofM�Fact�x�� into terminal states while creating edges and su�x links accordingly� This gives also
an idea of how� by symmetry� the automatonM�Su� �x�� can be minimized e�ciently intoM�Fact�x���

For example� in the automatonM�Fact�aabbabb�� of Figure 	���� the non
solid path is composed of
the two edges ��� b� �� and ��� b� ��� The automatonM�Su� �aabbabb�� is obtained by cloning respectively
states � and � into states ��� and ��� of Figure 	���

The duplication of the non
solid path labeled by v as above is implemented by the procedure of
Figure 	���� The input �r� k�� which represents the non
solid path� is de�ned by k � jxv��j and r �
��i� xv���� For example� with the automatonM�Fact�aabbabb�� of Figure 	��� the input is ��� ���

FA�to�SA�r� k�
� for letter a from k � ��st to last letter of x
� loop t� ��r� a�
� p� F �t�

 q � ��p� a�
� q� � State�Creation

� for each letter b such that ��q� b� �� nil


 loop E � E � f�q�� b� ��q� b��g
� Length�q�� � Length�p� � �
� F �t�� q�

�� F �q�� � F �q�
�� F �q�� q�

�� loop E � E � f�p� a� q�g� f�p� a� q��g
�� p� F �q�
�
 while p �� nil and ��p� a� � q
�� r � t

Fig� 
���� From M�Fact�x�� to M�Su� �x��� It is assumed that the couple �r� k� is ���i� xv���� jxv��j� where v
is the label of the non�solid path of M�Fact�x���

����� Size of factor automata� Bounds on the size of factor automata are similar to those of su�x
automata� We state the results in this section� We set �Q� i� T�E� �M�Fact�x���

Proposition ��
� If jxj � �
 card�Q� � jxj� �� Otherwise jxj � �
 and jxj� � � card�Q� � �jxj � ��
If jxj � �
 the upper bound is reached only when x is in the form abjxj��c for three letters a
 b
 and c

such that a �� b �� c�

Proof� The argument of the proof of Corollary 	�� works again� except that the last letter of x yields
the creation of only one state� Therefore� the upper bound on the number of states is one unit less than
that of su�x automata�

By Theorem 	��� in order to get the maximum number of states� letters x�� x	� � � � � xjxj�� should
eventually lead to the creation of two states �letters x�� x�� and xjxj cannot�� This happens only when
x� �� x�� x� � x� � � � � � xjxj��� If xjxj � xjxj�� the word x is in the form abm��� with m � � and
a �� b� and its factor automaton has exactly m� � states� Therefore� we must have xjxj �� xjxj�� to get
the �jxj � � bound� and this is also su�cient� ut

Figure 	��� displays a factor automaton having the maximum number of states for a word of length
	�

Proposition ����� If jxj � �
 jxj � card�E� � �jxj��� Otherwise jxj � �
 and jxj � card�E� � �jxj���
If jxj � �
 the upper bound is reached only when x is in the form abjxj��c for three pairwise distinct
letters a
 b
 and c�
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a b b b b b a

b b b b

b

a

Fig� 
���� A factor automaton with the maximum number of states�

Proof� Lemma 	��� is still valid for factor automata� and gives the upper bound �jxj � � for jxj � ��
The rest can be checked by hand�

To reach the upper bound� regarding Lemma 	��� again� M�Fact�x�� should have the maximum
number of states� Note that if x is in the form abjxj��a� with a� b � A and a �� b� card�E� � �jxj � �
only� If x is in the form abjxj��c for three pairwise letters a� b� and c� card�E� � �jxj � �� Therefore� by
Proposition 	��� this is the only possibility to reach the upper bound� ut

Figure 	��� displays a factor automaton having the maximum number of edges for a word of length
	�

� � � � 
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a b b b b b c

b b b b

b

c

c

c

c
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Fig� 
���� A factor automaton with the maximum number of edges�

����� On
line construction� The on
line construction of factor automata is similar to the construc

tion of su�x automata �Section 	���� The main di
erence is that the non
solid path of the current
automaton is stored and updated after the processing of each letter� and that table F implements �x
instead of fx that is related to �Su� �x�� The couple of variables �r� k� represents the path as explained
previously� The couple gives access to the waiting list of states that are possibly duplicated afterwards�

The function of Figure 	��� relies on procedure FA�Extend �given in Figure 	���� aimed at trans

forming the current automatonM�Fact�w�� into M�Fact�wa��� a � A� The correctness of the function
is based on a crucial property stated in the next theorem� For each nonempty word w� we denote by
R�M�Fact�w��� the automaton obtained from M�Fact�w�� by removing the state lastw and all edges
reaching it�

FactorAutomaton�x�
� �Q�E� � �����
� i� State�Creation

� Length�i�� �

 F �i�� nil

� last � i
� �r� k� � �i� ��

 for � from � up to x
� loop FA�Extend���
� return �Q� i�Q�E��Length� F

Fig� 
���� On�line construction of the factor automaton of a word x�
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Theorem ���� Let w � A�
 z the longest su�x of w that occurs at least twice in it
 and a � A� If
za �� Fact�w�
 then
 disregarding terminal states


R�M�Fact�wa��� �M�Su� �w���

Before proving the theorem� we prove the following lemma�

Lemma ����� Let w � A�
 z the longest su�x of w that occurs twice in it
 and a � A� If za �� Fact�w�

then
 for each s � A�
 we have

s �Fact�wa� z �� s � Su� �z��

Proof� The condition on z implies that �za���Fact�wa� � f�g� Then� we have �sa���Fact�wa� � f�g�
which implies that s is a su�x of w� Since z occurs twice in w� this is also the case for s �because some
word ta� with t �� �� belongs to z��Fact�wa� � s��Fact�wa��� Therefore� by the de�nition of z� s is a
su�x of z� ut
Proof of Theorem ���� We prove that� for any words u� v � Fact�w��

u �Fact�wa� v 
� u �Su� �w� v�

which is a re
statement of the conclusion of the theorem�
Assume �rst u �Fact�wa� v� After Lemma 	�� we can consider� for example� that u � Su� �v�� Then�

v��Su� �w� � u��Su� �w�� and to prove u �Su� �w� v it remains to show u��Su� �w� � v��Su� �w��
Let t � u��Su� �w�� We show that t � v��Su� �w�� Since ut � Su� �w�� we have uta � Su� �wa� �

Fact�wa�� and using the hypothesis� namely u �Fact�wa� v� we get that vta � Fact�wa�� If ut occurs only
once in w� �ut���Fact�w� � f�g� Therefore� �vt���Fact�w� � f�g because �Fact�wa� is a congruence�
which proves that vt � Su� �w�� i�e� t � v��Su� �w�� If ut occurs at least twice in w� by de�nition of z�
ut is a su�x of z� So� z � z�ut for some pre�x z� of z� Then� z�vt �Fact�wa� z� which implies that vt is a
su�x of z and consequently of w by Lemma 	���� Hence again� t � v��Su� �w�� This ends the �rst part
of the statement�

Conversely� let us consider that u �Su� �w� v� and prove u �Fact�wa� v� Without loss of generality� we
assume u � Su� �v�� so it remains to prove u��Fact�wa� � v��Fact�wa��

Let t � u��Fact�wa�� If t � �� t � v��Fact�wa� because v � Fact�w�� We then assume that t is
a nonempty word� If ut � Fact�w�� for some t� � A�� utt� � Su� �w�� that is tt� � u��Su� �w�� The
hypothesis u �Su� �w� v implies tt� � v��Su� �w�� and consequently t � v��Fact�wa�� If vt �� Fact�w�� t is
a su�x of wa� It can be written t�a for some su�x t� of w� So� t� � u��Su� �w�� and then t� � v��Su� �w�
which shows that vt� is a su�x of w� Therefore� t � v��Fact�wa�� This ends both the second part of the
statement and the whole proof� ut

During the construction of M�Fact�x��� the following property is invariant� let M�Fact�w�� be the
current automaton and z be as in Theorem 	�	� then ��i� z� � F �last�� Consequently� the condition on
z that appears in Theorem 	�	 translates into the test ���F �last�� a� �� nil�� If its value is true� the
automaton and the su�x z extend� and the procedure FA�Extend updates the pair �r� k� if necessary
in a natural way� Otherwise� Theorem 	�	 applies� which leads to �rst transform M�Fact�w�� into
M�Su� �w��� After that� the automaton is extended by the letter a� In this situation� the new non
solid
path is composed of at most one edge� as a consequence of Lemma 	�� �see also the proof of Theorem 	�	��

Finally� we state the complexity of function FactorAutomaton� the construction of factor au

tomata by this function takes linear time on a �xed alphabet�

Theorem ���� Function FactorAutomaton can be implemented to work on the input word x in time
O�jxj � log card�A�� within O�jxj� space�
Proof� If� for a moment� we do not consider the calls to procedure FA�to�SA� it is rather simple
to see that there is a linear number of instructions executed to built M�Fact�x��� Implementing the
automaton with adjacency lists� the cost of computing a transition is O�log card�A��� Which gives the
O�jxj � log card�A�� time for the considered instructions�
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FA�Extend���
� a� x�

� if ��F �last�� a� �� nil

� then newlast � State�Creation

 E � E � f�lasta�newlast�g
� Length�newlast� � Length�last� � �
� F �newlast�� ��F �last�� a�

 if k � � and Length�F �last�� � � � Length���F �last�� a��
� then �r� k�� �newlast� �� ��
� else FA�to�SA�r� k�

�� newlast � State�Creation

�� p� last
�� loop E � E � f�p� a� newlast�g
�� p� F �p�
�
 while p �� nil and ��p� a� � nil

�� if p � nil
�� then F �newlast�� i
�
 �r� k�� �newlast� �� ��
�� else q � ��p� a�
�� F �newlast�� q
�� if Length�p� � � � Length�q�
�� then �r� k� � �newlast� �� ��
�� else �r� k� � �last� ��
�� last � newlast

Fig� 
��	� From M�Fact�x� � � �x����� to M�Fact�x� � � �x����

The sequence of calls to procedure FA�to�SA behaves like a construction of M�Su� �x�� �or just
of M�Su� �x���� for some pre�x x� of x�� Thus� their accumulated running time is as announced by the
theorems of Section 	��� that is� O�jxj � log card�A���

This sketches the proof of the result� ut

Bibliographic notes

Only a few books are entirely devoted to pattern matching� One can refer to ���� and ����� The topic is treated
in some books on the design of algorithms such as ���� �
�� ����� ����� An extensive bibliography is also included
in ���� and the subject is partially treated in relation to automata in �����

The notion of a failure function to represent e�ciently an automaton is implicit in the work of Morris and
Pratt ���
��� It is intensively used in ���� and ���� The table�compression method is explained in �
�� It is the base
of some implementations of lex �compiler of lexical analyzer� and yacc �compiler of compiler� UNIX software
tools that involve automata�

The regular�expression�matching problem is considered for the construction of compilers �see �
� for example��
The transformation of a regular expression into an automaton is treated in standard textbooks on the subject�
The construction described in Section 
 is by Thompson ����� Many tools under the UNIX operating system use
a similar method� For example the grep command implements the method with reduced regular expressions�
While the command egrep operates on complete regular expressions and uses a lazy determinization of the
underlying automaton�

The �rst linear�time solution of the string�matching problem was given by Morris and Pratt� and improved
in ����� The analogue solution to the dictionary�matching problem was designed by Aho and Corasick ��� and is
implemented by the fgrep UNIX command�

Several authors have considered a variant of the dictionary�matching problem in which the set of words
changes during the search� This is called the �dynamic�dictionary�matching problem� �see ���� ���� ������ A related
work based on su�x automata is treated in ��
�� A solution to the problem restricted to uniform dictionaries is
given in ���� in the comparison model of computation�

The linear size of su�x automata �also called �directed acyclic word graphs� and denoted by the acronym
DAWG� and factor automata has been �rst noticed by Blumer et al�� and their e�cient construction is in ��� and
����� An alternative data structure that stores e�ciently the factors �subwords� of a word is the su�x tree� It has
been �rst introduced as a position tree by Weiner ����� but the most practical algorithms are by McCreight ����
and Ukkonen ����� Su�x automata and su�x trees have similar applications to the implementation of indexes
�inverted �les�� to pattern matching� and to data compression�
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The solution of the string�matching problem presented in Section � is adapted from an original algorithm
of Simon ����� It has been analyzed and improved by Hancart ��
�� These algorithms as well as algorithms in
���� solve the string�pre�x�matching problem which is the computation of ending pre�xes at each position on
the searched word� Breslauer et al� ���� gave lower bounds to this problem that meet the upper bounds of
Theorem ��
� Galil showed in ���� how to transform the algorithms of Knuth� Morris and Pratt� so that the
search phase works in real time �independently of the alphabet�� This applies as well to the algorithm of Simon�

There are many other solutions to the string�matching problem if we relax the condition that the bu�er
on the searched word is reduced to only one letter� The most practically e�cient solutions are based on the
algorithm of Boyer and Moore ����� With the use of automata� it has been extended to the dictionary�matching
problem by Commentz�Walter ��
� �see also ���� and by Crochemore et al� �see ������ The set of con�gurations
possibly met during the search phase of a variant of the algorithm of Boyer and Moore in which all information
is retained leads to what is called the �Boyer�Moore automaton�� It is still unknown if the number of states of
the automaton is polynomial as conjectured by Knuth �see ���� ��� ���� Theorem ��� is by Galil and Seiferas �����
Like their solution� several other proofs �in ���� �
� ���� of the same result are based on combinatorial properties
of words �see Chapter �Combinatorics of words���

Other kinds of patterns are considered in the approximate string�matching problem �see ���� for references
on the subject�� The �rst kind arises when mismatches are allowed between a given word and factors of the
searched word �base of the Hamming distance�� A second kind of patterns arises when approximate patterns are
de�ned by transformation rules �substitution� insertion� and deletion� that yield the edit distance �see Chapter
�String editing and DNA��� This notion is widely used for matching patterns in DNA sequences �see ��
���
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