The LCA Problem Revisited

Michael A. Bender Martin Farach-Coltoh
SUNY Stony Brook Rutgers University

May 16, 2000

Abstract

We present a very simple algorithm for the Least Common Atecgsoblem. We thus dispel the fre-
guently held notion that an optimal LCA computation is uridyeand unimplementable. Interestingly,
this algorithm is a sequentialization of a previously knoRiRAM algorithm of Berkman, Breslauer,
Galil, Schieber, and Vishkin [1].

Keywords: Data Structures, Least Common Ancestor (LCA), Range MimimQuery (RMQ), Cartesian
Tree.

1 Introduction

One of the most fundamental algorithmic problems on tredwoig to find theLeast Common Ancestor
(LCA) of a pair of nodes. The LCA of nodesandv in a tree is the shared ancestoncdndv that is located
farthest from the root. More formally, the LCA Problem iststhas follows: Given a rooted trdg how
can1 be preprocessed to answer LCA queries quickly for any paiiodies. Thus, one must optimize both
the preprocessing time and the query time.

The LCA problem has been studied intensively both becausdriherently beautiful algorithmically
and because fast algorithms for the LCA problem can be ussdlte other algorithmic problems. In [2],
Harel and Tarjan showed the surprising result that LCA agsecan be answered in constant time after only
linear preprocessing of the trde This classic paper is often cited because linear prepsitgss necessary
to achieve optimal algorithms in many applications. Howgités well understood that the actual algorithm

*Department of Computer Science, State University of NewkYalr Stony Brook, Stony Brook, NY 11794-4400, USA.

Email:bender @s. sunysb. edu. Supported in part by ISX Corporation and Hughes Researbbiizories.
tDepartment of Computer Science, Rutgers University, Raszay, NJ 08855,USA. Emaif:ar ach@s. r ut ger s. edu.

Supported in part by NSF Career Development Award CCR-98R21MATO Grant CRG 960215, NSF/NIH Grant BIR 94-12594-
03-CONF.

presented is far too complicated to implement effectivéty[3], Schieber and Vishkin introduced a new
LCA algorithm. Although their algorithm is vastly simpldran Harel and Tarjan’s—indeed, this was the
point of this new algorithm—it is far from simple and still ngarticularly implementable.

The folk wisdom of algorithm designers holds that the LCAlgemn still has no implementable optimal
solution. Thus, according to hearsay, it is better to havel@ti®on to a problem that does not rely on LCA
precomputation if possible. We argue in this paper thatftliswisdom is wrong.

In this paper, we present not onlysanplifiedLCA algorithm, we present simpleLCA algorithm! We
devise this algorithm by reéngineering an existing coogitd LCA algorithm: Berkman, Breslauer, Galil,
Schieber, and Vishkin [1]. presented a PRAM algorithm thrappocesses and answers querieS {x(n))
time and preprocesses in linear work. Although at first géarkis algorithm is not a promising candidate
for implementation, it turns out that almost all of the comgtions are PRAM induced: when the PRAM
complications are excised from this algorithm so that iteiar, mean, and sequential, we are left with an
extremely simple algorithm.

In this paper, we present this reéngineered algorithm. @imt is not to present a new algorithm.
Indeed, we have already noted that this algorithm has apgeasra PRAM algorithm before. The pointis to
change the folk wisdom so that researchers are free to udeltippwer and elegance of LCA computation
when itis appropriate.

The remainder of the paper is organized as follows. In Se@jave provide some definitions and initial
lemmas. In Section 3, we present a relatively slow algoritbin CA preprocessing. In Section 4, we show
how to speed up the algorithm so that it runs within the ddsiime bounds. Finally, in Section 5, we
answer some algorithmic questions that arise in the papehbtiare not directly related to solving the LCA
problem.

2 Definitions

We begin by defining theeast Common Ancestor (LCA) Probléonmally.
Problem 1 ThelLeast Common Ancestor (LCAjroblem:
Structure to Preprocess: A rooted tre€l” havingn nodes.

Query: For nodesu andw of treeT’, queryLCA7(u, v) returns the least common ancestorcdndv in 7',
that is, it returns the node furthest from the root that is aicestor of both: andv. (When the context
is clear, we drop the subscrifit on theLcA.)

TheRange Minimum Query (RMQ) Problemhich seems quite different from the LCA problem, is, in
fact, intimately linked.

Problem 2 TheRange Minimum Query (RMQproblem:
Structure to Preprocess: A lengthn array A of numbers.

Query: For indices: and j betweenl andn, queryRMQ 4(z, y) returns the index of the smallest element
in the subarrayA[i . .. j]. (When the context is clear, we drop the subscHin thermQ.)

In order to simplify the description of algorithms that haweth preprocessing and query complexity,
we introduce the following notation. If an algorithm hasgm@cessing time (n) and query timey(n), we
will say that the algorithm has complexity (n), g(n)).

Our solutions to the LCA problem are derived from solutiomg¢ite RMQ problem. Thus, before pro-
ceeding, we reduce the LCA problem to the RMQ problem. Thiefohg simple lemma establishes this
reduction.

Lemma3 If there is an (f(n), g(n))-time solution for RMQ, then there is an
(f(2n—1)+0O(n), g(2n — 1) + O(1))-time solution for LCA.

As we will see, the)(n) term in the preprocessing comes from the time needed toectbatsoon-to-be-
presented lengthn — 1 array, and the) (1) term in the query comes from the time needed to convert the
RMQ answer on this array to an LCA answer in the tree.

Proof: LetT be the input tree. The reduction relies on one key obsenvatio

Observation 4 The LCA of nodeg andv is the shallowest node encountered between the visitata to
v during a depth first search traversal &f

Therefore, the reduction proceeds as follows.

1. LetarrayE[l,...,2n — 1] store the nodes visited in an Euler Tour of the tfeé That is,E[i] is the
label of theith node visited in the Euler tour f.

2. Letthelevelof a node be its distance from the root. Compute the LevelAbfd, . . ., 2n — 1], where
L[i] is the level of nodd-[7] of the Euler Tour.

3. Let therepresentativeof a node in an Euler tour be the index of first occurrence ofrtbée in the
tour?; formally, the representative ofis argmin;{E[j] = i}. Compute the Representative Array
R[1,...,n], whereR]i] is the index of the representative of nade

The Euler Tour off is the sequence of nodes we obtain if we write down the labeaoh node each time it is visited during
a DFS. The array of the Euler tour has lengih — 1 because we start at the root and subsequently output a notidie® we

traverse an edge. We traverse each ofithe 1 edges twice, once in each direction.
?In fact, any occurrence of will suffice to make the algorithm work, but we consider thestfioccurrence for the sake of

concreteness.

Each of these three steps takeg:) time, yieldingO(n) total time. To computeCA7(z, y), we note
the following:

e The nodes in the Euler Tour between the first visitsut@and tov are F[R[u],..., R[v]] (or
E[R[v], .., Ru]).

¢ The shallowest node in this subtour is at indexQy, (R[u], R[v]), sinceL[:] stores the level of the
node at~[i], and the RMQ will thus report the position of the node with miom level. (Recall
Observation 4.)

¢ The node at this position IS[RMQy, (R[u], R[v])], which is thus the output afcA 7 (u, v).

Thus, we can complete our reduction by preprocessing LekralyA. for RMQ. As promised/. is an array
of size2n — 1, and building it takes timé& (). Thus, the total preprocessing f$2n — 1) + O(n). To
calculate the query time observe that an LCA query in thisicidn uses one RMQ query ih and three
array references & (1) time each. The query thus takes tim@n — 1) + O(1), and we have completed
the proof of the reduction. |

From now on, we focus only on RMQ solutions. We consider sohstto the general RMQ problem
as well as to an important restricted case suggested by thg &r In array L. from the above reduction
adjacent elements differ by1 or —1. We obtain thist1 restriction because, for any two adjacent elements
in an Euler tour, one is always the parent of the other, andheio tevels differ by exactly one. Thus, we
consider thet1-RMQ problem as a special case.

2.1 A Naive Solution for RMQ

We first observe that RMQ has a solution with complexify(n?), O(1)): build a table storing answers to
all of the n? possible queries. To achie®(n?) preprocessing rather than ther>) naive preprocessing,
we apply a trivial dynamic program. Notice that answeringRIMQ query now requires just one array
lookup.

3 A Faster RMQ Algorithm

We will improve the(O(n?), O(1))-time brute-force table algorithm for (general) RMQ. Theadis to
precompute each query whose length is a power of two. Th&trigvery: betweenl andn» and everyj
between 1 anthg n, we find the minimum element in the block starting @nd having Iengtlﬁf, that is,
we computeM [z, j] = argmin_; ;. .i_;{A[k]}. TableA! therefore has siz€(nlogn), and we fill it in

time O (n log n) by using dynamic programming. Specifically, we find the minimin a block of size? by
comparing the two minima of its two constituent blocks oksiz*. More formally, M [i, j] = M[i, j — 1]
if AQM[i,j—1]] < M[i+2"" = 1,5 — 1]andM[i, j]= M[i + 2/~ — 1, j — 1] otherwise.

How do we use these blocks to compute an arbitrang (s, j)? We select two overlapping blocks that
entirely cover the subrange: 12t be the size of the largest block that fits into the range ficim j, that
isletk = [log(j — 7)]. ThenrRMQ(¢,) can be computed by comparing the minima of the following two
blocks:itoi + 2% — 1 (M (i, k))andj — 2F + 1toj (M (j — 2* 4+ 1,k)). These values have already been
computed, so we can find the RMQ in constant time.

This gives theSparse Table (SBIgorithm for RMQ, with complexityO(n log n), O(1)). Notice that
the total computation to answer an RMQ query is three adulitid array reference and a minimum, in
addition to two other operations: a log and a floor. These easelen together as the problem of finding the
most significant bit of a word. Notice that we must have onédnsameration in our algorithm, since Harel
and Tarjan [2] showed that LCA computation has a lower bouh @og log n) on a pointer machine.
Furthermore, the most-significant-bit operation has a f&sytable lookup solution.

Below, we will use the ST algorithm to build an even fasteoaitym for the+1RMQ problem.

4 An{O(n), O(1))-Time Algorithm for £1RMQ

Suppose we have an arraywith the +1 restriction. We will use a table-lookup technique to prepoie
answers on small subarrays, thus removing the log factom fitte preprocessing. To this end, partitidn
into blocks of sizel%. Define an arrayd’[1, . .., 2n/ log n], whereA’[{] is the minimum element in the
ith block of A. Define an equal size arrdy, whereB[:] is a position in theth block in which value4’[:]
occurs. Recall that RMQ queries return the position of theimiim and that the LCA to RMQ reduction
uses the position of the minimum, rather than the minimumdfitsSThus we will use array3 to keep track
of where the minima im’ came from.

The ST algorithm runs on array’ in time (O(n), O(1)). Having preprocessed’ for RMQ, consider
how we answer any quemMmQ(¢, j) in A. The indices and;j might be in the same block, so we have to
preprocess each block to answer RMQ queries fj are in different blocks, the we can answer the query
RMQ(7, j) as follows. First compute the values:

1. The minimum from forward to the end of its block.
2. The minimum of all the blocks in between betweétrblock andj’s block.

3. The minimum from the beginning gfs block toj.

The query will return the position of the minimum of the thredues computed. The second minimum is
found in constant time by an RMQ o#', which has been preprocessed using the ST algorithm. But, we
need to know how to answer range minimum queries inside Blexkcompute the first and third minima,
and thus to finish off the algorithm. Thus, the in-block qaerare needed whetheand; are in the same
block or not.

Therefore, we focus now only on in-block RMQs. If we simplyfpemed RMQ preprocessing on each
block, we would spend too much time in preprocessing. If thaxk were identical, then we could share
their preprocessing. However, it is too much to hope for thatks would be so repeated. The following
observation establishes a much stronger shared-pregiogawoperty.

Observation 5 If two arrays X[1,..., k] andY[l, ..., k] differ by some fixed value at each position, that
is, there is ac such thatX [i] = Y'[i] 4 ¢ for everyi, then all RMQ answers will be the same férandY’.
In this case, we can use the same preprocessing for botharray

Thus, we camormalizea block by subtracting its initial offset from every elemeWe now use the:-1
property to show that there are very few kinds of normalizkeatks.

Lemma 6 There areO(/n) kinds of normalized blocks.

Proof: Adjacent elements in normalized blocks differ py or —1. Thus, normalized blocks are specified
by a+1 vector of length(1/2 - log n) — 1. There are(!/2ls®)=1 — O(,/n) such vectors. n

We are now basically done. We credi¢,/n) tables, one for each possible normalized block. In each
table, we put al(°22)2 = O(log? n) answers to all in-block queries. This gives a totatfy/n log® n)
total preprocessing of normalized block tables, 81{d) query time. Finally, compute, for each block.n
which normalized block table it should use for its RMQ qusri@hus, each in-block RMQ query takes a
single table lookup.

Overall, the total space and preprocessing used for nazethblock tables and’ tables isO(n) and

the total query time i®)(1).

4.1 Wrapping Up

We started out by showing a reduction from the LCA problemhe RMQ problem, but with the key
observation that the reduction actually leads tb1&MQ problem.

We gave a triviakO(n?), O(1))-time table-lookup algorithm for RMQ, and show how to spigrie
table to get O (nlogn), O(1))-time table-lookup algorithm. We used this latter algaritbn a smaller
summary arrayd’ and needed only to process small blocks to finish the alguarithinally, we notice that

6

most of these blocks are the same, from the point of view oRil&) problem, by using the-1 assumption
given by the original reduction.

5 A Fast Algorithm for RMQ

We have §0(n), O(1)) £1RMQ. Now we show that the general RMQ can be solved in the sam@lex-
ity. We do this by reducing the RMQ problem to the LCA probleffius, to solve a general RMQ problem,
one would convert it to an LCA problem and then back taiERMQ problem.

The following lemma establishes the reduction from RMQ tALC

Lemma 7 If there is a(O(n), O(1)) solution for LCA, then there is @ (n), O(1)) solution for RMQ.

We will show that theD(n) term in the preprocessing comes from the time needed to thél€Cartesian
Tree of A and theD (1) term in the query comes from the time needed to covert the Li&var on this tree
to an RMQ answer or.

Proof: Let A[l, ..., n] be the input array.

The Cartesian Tree of an array is defined as follows. The faGartesian Tree is the minimum element
of the array, and the root is labeled with the position of thinimum. Removing the root element splits the
array into two pieces. The left and right children of the race the recursively constructed Cartesian trees
of the left and right subarrays, respectively.

A Cartesian Tree can be built in linear time as follows. Swggs; is the Cartesian tree of[1, .. ., i].

To build C'; 4, we notice that node + 1 will belong to the rightmost path af’;;, so we climb up the
rightmost path of’; until finding the position wheré+ 1 belongs. Each comparison either adds an element
to the rightmost path or removes one, and each node can danlgh@rightmost path and leave it once. Thus
the total time to build”’, is O(n).

The reduction is as follows.

e Let C be the Cartesian Tree of. Recall that we associate with each nodé&ithe corresponding
corresponding toi[:] with the index:.

Claim 7A RMQy4(i,j) = LCA¢ (i, j).

Proof: Consider the least common ancestar,of : andj in the Cartesian Tre€'. In the recursive
description of a Cartesian trekjs the first node that separateand;. Thus, in the arrayi, elementA[k]
is between elementd[:] and A[j]. FurthermoreA[k] must be the smallest such element in the subarray
Ali, ..., j] since otherwise, there would be an smaller eleniéim A[, ..., j] that would be an ancestor
of & in ¢/, andi and; would already have been separated:hy

More concisely, sincé is the first element to splitandj, it is between them because it splits them, and
it is minimal because it is the first element to do so. ThustiessRMQ. o

We see that we can complete our reduction by preprocessn@aintesian Tre€' for LCA. Tree C
takes timeD () to build, and becaus€ is ann node tree, LCA preprocessing takesn) time, for a total
of O(n) time. The query then take&3(1), and we have completed the proof of the reduction. |

References

[1] O. Berkman, D. Breslauer, Z. Galil, B. Schieber, and Ushkin. Highly parallelizable problems. In
Proc. of the 21st Ann. ACM Symp. on Theory of Compugages 309-319, 1989.

[2] D. Harel and R. E. Tarjan. Fast algorithms for finding resaircommon ancestor§SIAM J. Comput.
13(2):338-355, 1984.

[3] B. Schieber and U. Vishkin. On finding lowest common amges Simplification and parallelization.
SIAM J. Comput.17:1253-1262, 1988.

