
A Faster Algorithm for the Inverse Spanning Tree Problem

Ravindra K. Ahuja
Department of Industrial & Systems Engineering

University of Florida,
Gainesville, FL 32611, USA

ahuja@ufl.edu

James B. Orlin
Sloan School of Management

Massachusetts Institute of Technology
Cambridge, MA 02139, USA

jorlin@mit.edu

(February 14, 1998; Revised May 27, 1999)

1

A Faster Algorithm for the Inverse Spanning Tree Problem

Ravindra K. Ahuja and James B. Orlin

ABSTRACT

In this paper, we consider the inverse spanning tree problem. Given an undirected graph G0 = (N0, A0)
with n nodes, m arcs, an arc cost vector c, and a spanning tree T0, the inverse spanning tree problem is to
perturb the arc cost vector c to a vector d so that T0 is a minimum spanning tree with respect to the cost
vector d and the cost of perturbation given by |d – c| = |d c |ij ij(i, j) A −∈∑ is minimum. We show that the

dual of the inverse spanning tree problem is a bipartite node weighted matching problem on a specially
structured graph (which we call the path graph) that contains m nodes and as many as (m-n+1)(n-1) =
O(nm) arcs. We first transform the bipartite node weighted matching problem into a specially structured
minimum cost flow problem and use its special structure to develop an O(n3) algorithm. We next use its
special structure more effectively and develop an O(n2 log n) time algorithm. This improves the previous
O(n3) time algorithm due to Sokkalingam, Ahuja and Orlin [1999].

1. INTRODUCTION

In this paper, we study the inverse spanning tree problem. Inverse optimization is a relatively new
area of research within the operations research community. Some references on inverse optimization
include the following: Burton and Toint [1992 and 1994], Burton, Pulleyblank, and Toint [1997], Cai and
Li [1995], Cai, Yang, and Li [1996], Xu and Zhang [1995], Yang and Zhang [1996], Yang, Zhang, and
Ma [1997], Zhang and Cai [1998], Zhang, Liu, and Ma [1996], Zhang, Ma, and Cai [1995], and Ahuja
and Orlin [1998a, 1998b]. This paper improves upon the previous algorithm of Sokkalingam, Ahuja and
Orlin [1999] for the inverse spanning tree problem.

We first give some network notation. Let G0 = (N0, A0) be a connected undirected network

consisting of the node set N0 and the arc set A0. Let c denote the arc cost vector. Let n = |N0| and m =

|A0|. We assume that N0 = {1, 2, ... , n} and A0 = {a1, a2, ..., am}. We denote by tail[j] and head[j] the
two endpoints of the arc aj. Since each arc aj is undirected, we can make any of its endpoints as tail[j]
and the other endpoint as head[j]. In this paper, we use the network notation such as tree, spanning tree,
matching, rooted tree, path, and directed path, as in the book of Ahuja, Magnanti and Orlin [1993]. We
represent a path as a sequence of nodes i1-i2-i3- ... - ik with the implicit understanding that all the arcs (i1,
i2), (i2, i3), ... , (ik-1, ik) are present in the network. We refer to the nodes i2, i3, ... , ik-1 as internal nodes
in the path i1-i2-i3- ... - ik. Alternatively, we may also represent a path as a sequence of arcs a1-a2-a3- ... -
ak with the implicit assumption that the consecutive arcs in the path have a common endpoint.

2

Let T0 be a spanning tree of G0. We assume that the arcs are indexed so that T0 = {a1, a2, ... ,

an-1}. We refer to the arcs in T0 as tree arcs and arcs not in T0 as nontree arcs. The inverse spanning

tree problem is to find an arc cost vector d such that T0 is the minimum cost spanning tree with respect to

d and such that |d c |j jj 1
n −=∑ is minimum. We show in this paper that the dual of the inverse spanning

tree problem is a bipartite node weighted matching problem on a graph (which we call a path graph) that
contains m nodes and as many as (m-n+1)(n-1) = O(nm) arcs. We first transform the node weighted
matching problem into a specially structured minimum cost flow problem and show that we can solve this
minimum cost flow in O(n3) time. We next use its special structure more effectively and develop an
O(n2 log n) time. This approach yields an O(n2 log n) algorithm for the inverse spanning tree problem
and improves the previous O(n3) time algorithm due to Sokkalingam, Ahuja and Orlin [1999].

2. FORMULATING THE INVERSE SPANNING TREE PROBLEM

In this section, we show that the inverse spanning tree problem can be transformed to a bipartite

node weighted matching problem on a graph. In the spanning tree T0, there is a unique path between any
two nodes; we denote by P[aj] the set of tree arcs contained between the two endpoints of the nontree arc

aj. It is well known (see, for example, Ahuja, Magnanti and Orlin [1993]) that T0 is a minimum spanning
tree with respect to the arc cost vector d if and only if it satisfies the following optimality conditions:

di ≤ dj for each arc ai ∈ P[aj] and for each j = n, n+1, ..., m. (1)

Now observe from (1) that increasing the cost of tree arcs and decreasing the cost of nontree arcs
does not take the tree T0 closer to satisfying the optimality conditions. This observation implies that there
exists an optimal cost vector d such that d = c + α, αi ≤ 0 for each i = 1, 2, ..., (n-1), and αj ≥ 0 for each j
= n, n+1, ..., m. This observation allows us to formulate the inverse spanning tree problem as follows:

Minimize α jj n
m
=∑ - α ii 1

n 1
=
−∑ (2a)

subject to

ci + αi ≤ cj + αj for each ai ∈ P[aj] and for each j = n, n+1, ..., m, (2b)

αi ≤ 0 for each i = 1 to (n-1), and αj ≥ 0 for each j = n, n+1, ..., m. (2c)

or, equivalently,

Maximize α ii 1
n 1
=
−∑ - α jj n

m
=∑ (3a)

subject to

αi - αj ≤ cj - ci for each (i, j) ∈ A′, (3b)

 αi ≤ 0 for each node i ∈ N1
′ and αj ≥ 0 for each node j ∈ N2

′, (3c)

3

where the graph G′ = (N′, A′) = (N1
′∪ N2

′, A) is a bipartite graph defined with respect to the tree T0 in

the following manner. The node set N′ = N1
′∪ N2

′ satisfies N1
′ = {1, 2,, n-1} and N2

′ = {n, n+1, ...,

m} and the arc set A′ is obtained by considering each nontree arc aj one by one and adding the arc (i, j)

for each ai ∈ P[aj]; that is, A′ = {(i, j) : ai ∈ P[aj], 1 ≤ i ≤ n-1, and n ≤ j ≤ m}. We refer to the graph G′ as

the path graph. Observe that the path graph contains m nodes and as many as (m-n+1)(n-1) = O(nm)
arcs.

The formulation (3) is a linear programming problem. We will now take the dual of (3). If we
associate a dual variable xij with the arc (i, j) in (3b), then the dual of (3) can be stated as follows:

Minimize () () ()
(,) { :(,) } { :(,) }

c c x c x c xj i ij
i j

j ij
i i jj

i ij
j i ji

− = −
∈ ∈∈ ∈∈′ ′′ ′′

∑ ∑∑ ∑∑
A AN AN2 1

 (4a)

subject to

∑ {j:(i,j)∈A′}xij ≤ 1 for each node i ∈ N1
′, (4b)

∑ {i:(i,j)∈A′}xij ≤ 1 for each node j ∈ N2
′, (4c)

xij ≥ 0 for each arc (i, j) ∈ A′. (4d)

In taking the dual, we have taken the liberty of replacing what should appear as (4c) by its
negative. Notice that (4) is a mathematical formulation of the bipartite node weighted matching problem

on the path graph, where we associate a weight of –ci with any node i ∈ N1
′ and a weight of cj for each

node j ∈ N2
′. (In a node weighted matching problem, we want to find a matching such that the sum of

the weights of the matched nodes is maximum.) For every matching M of G′, we may represent M by its
vector x defined as xij = 1 for every arc (i, j) ∈ M and xij = 0 for every arc (i, j) ∉ M. We will also refer to
x as a matching.

3. AN O(n3) ALGORITHM

We now describe the transformation of the node weighted matching problem in G′ = (N′, A′) to a
bipartite minimum cost flow problem in a network which we represent by G = (N, A). This minimum
cost flow problem has the following nodes: (i) a set N1 of (n-1) left nodes, one left node i corresponding

to each arc ai ∈ T0; (ii) a set N2 of m right nodes, one right node j corresponding to each arc aj ∈ A0

(including arcs of T0); (iii) a source node s; and (iv) a sink node t. This will lead to two nodes in G with
label i for each ai ∈ T0; however, it will be clear from context which of these nodes is being referred to.

The minimum cost flow problem has the following arcs: (i) a source arc (s, i) from the source
node s to every left node i; (ii) a sink arc (j, t) from each right node j to the sink node t; (iii) an arc (i, i)
from every left node i to the corresponding right node i (this arc corresponds to a slack variable); and (iv)
an arc (i, j) from a left node i to the right node j for every arc (i, j) in the path graph G′. We define the
supply/demand vector b as follows: b(s) = -b(t) = (n-1), and b(i) = 0 for every other node i. In the

4

network G, we set the capacity of each source and sink arc to 1, and set the capacity of each remaining arc
to infinity. Finally, we set the cost of each sink arc (j, t) to cj and the cost of all other arcs to zero. Let µ

= Σj∈T0 cj. We will henceforth denote the cost of any arc (i, j) as cij and the capacity of the arc (i, j) as

uij. The following result establishes a connection between the node weighted matching problem in G′ and
the minimum cost flow problem in G.

Lemma 1. For every feasible matching x′ in the network G′, there exists a feasible integral flow x in G
satisfying cx = c′x′ + µ. Conversely, for every integral feasible flow x in G, there exists a feasible
matching x' with cx = c′x′ + µ.

Proof. Consider a feasible matching x′ in G′. Let N1
′()M and N1

′()U respectively, denote the sets of

matched and unmatched nodes in N1
′. Similarly, let N2

′()M and N2
′()U , respectively, denote the sets

of matched and unmatched nodes in N2
′. Observe that in G′ the contribution of a matched arc (i, j) to the

objective function (4a) is cj - ci. Notice that c′x′ = ′x ij = c jj M{ ()}∈ ′∑ N2
 - cii M{ ()}∈ ′∑ N1

. We

obtain an integral flow x in the network G corresponding to the matching x′ as follows. We send one unit
of flow along the path s-i-j-t for every arc (i, j) that satisfies ′x ij = 1, and one unit of flow along the path s-

i-i-t for every node i ∈ N1
′()U . Observe that cx = c jj M{ ()}∈ ′∑ N2

+ cii U{ ()}∈ ′∑ N1
. Then, cx - c′x′ =

cii{ }∈ ′∑ N1
= µ. Hence, cx = c′x′ + µ, completing the proof of one part of the theorem. To prove the

converse result, let x be an integral flow in G. We obtain a matching x′ from x in the following manner:

we let xij′ = 1 if xij = 1, i ≠ s, j ≠ t, and i ≠ j; otherwise xij′ = 0. The proof that cx = c′x′ + µ is similar to

the proof of the first part. ♦

The minimum cost flow problem in the network G satisfies the following properties: (i) each
source and sink arc in the network has a unit capacity; (ii) there are (n-1) source arcs; and (iii) all arcs
other than the sink arcs have zero cost of flow. These properties allow us to solve the minimum cost flow
problem in O(n3) time using simple data structures. We first need to define some additional notation.
Consider the network G = (N, A), where N = {s, t}∪ N1∪ N2. For any node j ∈ N2, we let A(j) = {i : i ∈
N1 and (i, j) ∈ A}. Thus, A(j) is the set of nodes adjacent to node j ∈ N2. Let M2(x) denote the set of
matched nodes in N2 with respect to the flow x.

We define the residual network G(x) with respect to the network G and flow x as follows. We
replace each arc (i, j) ∈ A by two arcs (i, j) and (j, i). The arc (i, j) has cost cij and residual capacity rij =
uij - xij, and the arc (j, i) has cost cji = - cij and residual capacity rji = xij. The residual network consists
only of arcs with positive residual capacity. In the residual network G(x), let R1(x) and R2(x),
respectively, denote the sets of nodes in N1 and N2 which are reachable from node s (that is, have
directed paths from node s). We can determine the sets R1(x) and R2(x) using a graph search algorithm.
The search time is proportional to the number of arcs in the residual network G(x), which in our case is
O(nm).

5

We use the successive shortest path (minimum cost flow) algorithm to solve the minimum cost
flow problem in the network G. The successive shortest path algorithm is a well-known algorithm to
solve the minimum cost flow problem. This algorithm starts with x = 0 and proceeds by augmenting flow
along shortest (directed) paths from node s to node t in the residual network G(x). Observe that any
directed path from node s to node t will contain exactly one sink arc, and the cost of the path will equal
the cost of the sink arc. Consequently, the shortest path in G(x) will contain the smallest cost sink arc
among all sink arcs emanating from nodes in R2(x). We state this result as a property.

Property 1. Let cq = min{cj : j ∈ R2(x)}, and let P[q] be any directed path from node s to node q. Then
the directed path P[q]-t is a shortest path in G(x) from node s to node t.

Our algorithm uses Property 1 but not directly. Its direct use requires computing the set R2(x)
which takes O(nm) time, since the network G contains O(nm) arcs. We will show how we can identify a
shortest path in G(x) from node s to node t in only O(n2) time rather than in O(nm) time. Our algorithm
instead determines R1(x) and for each node i ∈ R1(x) determines a directed path from node s to node i
which we represent by S[i]. Assuming that R1(x) has been determined, the following result allows us to

determine the reachability of any node j ∈ N2.

Property 2. There is a directed path from node s to a node j ∈ N2 if and only if R1(x)∩ A(j) is nonempty.

Our algorithm for the node weighted matching problem first orders the nodes in N2 in the

nondecreasing order of the costs cj’s. Let the vector σ denote the resulting node ordering, that is, cσ(1) ≤
cσ(2) ≤ ≤ cσ(m). The algorithm then examines nodes in this order and uses Property 2 to determine the
first unmatched node q that is reachable from the source node s. The node order ensures that Property 1 is
satisfied and the shortest augmenting path from node s to node t passes through node q; subsequently, the
algorithm augments a unit flow along this path. If an unmatched node in N2 is not reachable from node s,
then it can be easily proved that it will not be reachable in subsequent stages. (One can easily prove more
generally that as more iterations are performed, no new nodes are added to R1(x) but its nodes may be
deleted.) Thus the algorithm need not reexamine any node in N2. Figure 1 gives an algorithmic
description of the inverse node weighted matching algorithm.

6

algorithm node weighted matching;
begin

let σ denote an ordering of the nodes in N2 in the nondecreasing order of cj’s;
x : = 0;
compute R1(x) ⊆ N1;
label all nodes in R1(x) and unlabel all other nodes in N1;
for j := 1 to m do
begin

q : = σ[j];
if there is a labeled node in A(q) then
begin

select a labeled node p in A[q];
augment one unit of flow in the path S[p]-q-t;
update x and G(x);
compute R1(x), and S[i] for each node i ∈ R1(x);
mark all nodes in R1(x) as labeled and all other nodes in N1 as unlabeled;

end;
end;
x is an optimal flow in the network G;

end;

Figure 1. The node weighted matching algorithm on path graphs.

We next study the worst-case complexity of the node weighted matching algorithm. Let dmax
denote the maximum indegree of a node j ∈ N2. It follows that dmax ≥ |A(j)| for each j ∈ N2. In the
worst-case, dmax can be as large as n-1, but it may be much smaller as well. We will determine the
running time of the algorithm in terms of dmax. The algorithm takes O(m log m) = O(m log n) time to

determine the node ordering σ. An iteration of the for loop examines each arc in A(q) to find a labeled
node p (Operation 1). In case it succeeds in finding a labeled node, then it augments one unit of flow
along the shortest path (Operation 2); updates x and G(x) (Operation 3); compute R1(x) and the path S[i]

for each i ∈ R1(x) (Operation 4); and labels nodes in N1 (Operation 5). Operation 1 takes O(dmax) time
per node in N2 and O(m dmax) overall. Operations 2 through 5 are performed whenever an augmentation
takes place. There will be exactly (n-1) augmentations because an augmentation saturates a source arc,
there are (n-1) source arcs, and eventually each source arc will be saturated. An augmentation contains at
most 2n+2 nodes because its internal nodes alternate between nodes in N1 and N2 and |N1| = n-1.

Consequently, Operations 2 and 3 require O(n) time per iteration and O(n2) overall.

We next focus on Operation 4 that involves computation of R1(x) and paths S[i] for all i ∈ R1(x).
Let M2(x) denote the set of matched nodes in N2 with respect to x. Any directed path from node s to a
node p in N1 in G(x) is of the form s-i0-j1-i1-j2-i2- ... -jk-ik, where each of the arcs (j1, i1), (j2, i2), ..., (jk,
ik) is a reversal of a matched arc in x. Hence all the nodes j1, j2, ..., jk are matched nodes in x. In other
words, any directed path in G(x) from node s to a node p in N1 must have all arcs incident to nodes in
M2(x), except the first arc which is a source arc. This observation allows us to compute R1(x) by

7

applying the graph search algorithm to a smaller subgraph Gs = (Ns, As) defined as follows: Ns =
{s}∪ N1∪ M2(x) and As = {(s, i) : i ∈ N1}∪ {(i, j) in G(x) : i ∈ M2(x) or j ∈ M2(x)}. Since M2(x) ≤
(n-1), we can construct Gs(x) in O(n dmax) time and run the graph search algorithm to find all nodes
reachable from node s in the same time. A graph search algorithm not only finds R1(x), the nodes
reachable from node s, it also finds the directed paths to those nodes which it stores in the form of
predecessor indices. Operation 4 takes O(n dmax) time per iteration and O(n2 dmax) time overall. After
computing R1(x), we label nodes in N1 in O(n) time. We summarize our discussion with the following
result.

Theorem 1. The node weighted matching algorithm solves the node weighted matching problem on path
graphs, and hence the inverse spanning tree problem in O(n2 dmax) time, where dmax is the maximum
indegree of any node in N2.

Since dmax = O(n), we immediately get a bound of O(n3) for both the problems. This time bound
matches the time bound of the algorithm by Sokkalingam, Ahuja and Orlin [1999] for the inverse
spanning tree problem. The algorithm given in Figure 1 can also be implemented in O(n2 log n) time
using the dynamic tree data structure due to Sleator and Tarjan [1983]. However, the dynamic tree data
structure has large computational overhead and is difficult to implement. In the next section, we describe
another O(n2 log n) algorithm that is simpler and is easier to implement. In fact, our improved
implementation of the node weighted matching algorithm is the same as the one described above, except
that it is carried out on a transformed network.

4. AN O(n2 log n) ALGORITHM

In this section, we develop an O(n2 log n) implementation of the node weighted matching
problem developed in Section 3. We first present some notation.

Notation and Definitions

We will visualize the tree T0 as if it is hanging down from node 1. We use the notation that arcs
in the tree denote the predecessor-successor relationship with the node closer to the root being the
predecessor of the node farther from the root. We denote the predecessor of node i by pred(i) and follow
the convention that pred(1) = 0. We define the descendants of a node i to be all nodes belonging to the
subtree of T0 rooted at node i, that is, containing node i, its successors, successors of its successors, and
so on. We denote by desc(i) the number of descendants of node i. We assume without any loss of
generality that for any node its child with the maximum number of descendants is its leftmost child.

Consider a tree arc (i, j) with j = pred(i). As per Sleator and Tarjan [1983], we call an arc (i, j)
heavy if desc(i) ≥ ½ desc(j), that is, node i contains at least half of the descendants of node j. An arc
which is not heavy is called a light arc. Notice that since the descendant set of nodes includes node i,
node i will have at most one heavy arc going to one of its successors. If a node has a heavy arc directed
to one of its successors, then this arc will be the node's leftmost arc. We denote by H the set of heavy arcs

in T0 and by L the set of light arcs in T0. We define a heavy path as a path in T0 consisting entirely of
heavy arcs. We define the root of a heavy path as the node on the path closest to node 1. We refer to a
subpath of a heavy path as a heavy subpath. We illustrate the definitions of heavy arcs and heavy paths

8

using the numerical example given in Figure 2. In the figure, we show the light arcs by thin lines and
heavy arcs by thick lines. The tree has three heavy paths: 1-2-4-7-9-12, 5-8-10-13, and 3-6, with roots as
1, 5, and 3, respectively.

We point out that our definitions of the heavy arcs have been adapted from the dynamic tree data
structure due to Sleator and Tarjan [1983] (see, also, Tarjan [1983]). The following property is
immediate.

Property 3. The set H of heavy arcs defines a collection of a node-disjoint heavy paths.

Each node i in the tree T0 has a unique path to the root node which we call the predecessor path
and denote it by Q[i]. We can efficiently identify the predecessor path Q[i] by tracing the predecessor
indices starting at node i. Now consider a predecessor path from any node k to the root node. This path
may be expressed as a sequence of heavy and light arcs, where heavy subpaths alternate with light arcs.
The following result due to Sleator and Tarjan [1983] states that a predecessor path will have O(log n)
light arcs and, hence, O(log n) heavy subpaths.

Property 4. A predecessor path contains O(log n) light arcs and O(log n) heavy subpaths.

We will assume in the subsequent discussion that arcs in the tree T0 are numbered so that all arcs
in each heavy path are consecutively numbered. We accomplish this by performing a depth-first search
of the tree T0 and numbering the arcs in the order they are examined. While performing the search, we
follow the convention that arcs corresponding to the children of each node are examined from left to right.
(The tree in Figure 2 shows such an ordering of arcs.) This convention together with the fact that any
heavy arc is a leftmost arc implies that arcs will be renumbered in a manner so that arcs in each heavy
path (or, subpath) are consecutive.

Defining Type 1 and Type 2 Subpaths

We are now in a position to describe the basic idea behind our improvement. The running time of
the node weighted matching algorithm described in the previous section is O(n2dmax), where dmax is the
maximum indegree of any node in N2. For the minimum cost flow formulation described earlier, dmax

can be as large as n and the running time of the algorithm becomes O(n3). In the new equivalent
formulation described in this section, dmax= O(log n), and the running time becomes O(n2 log n).

Consider any nontree arc aj in the original graph. In the previous formulation, a right node j ∈ N2
has an incoming arc from every node i ∈ N1 if arc ai ∈ P[aj]. Recall that P[aj] is the set of all tree arcs in

T0 between the two endpoints of the arc aj. Observe that P[aj] = (Q[tail[j]]∪ Q[head[j]]) –

(Q[tail[j]]∩ Q[head[j]]). We call the node where the two predecessor paths Q[tail[j]] and Q[head[j]] meet
as the apex of the path P[aj] and denote it by apex[j].

The set P[aj] may contain light as well as heavy arcs. By Property 4, P[aj] contains O(log n) light

arcs, but may contain as many as (n –1) heavy arcs (if T0 is a path). We thus need to handle heavy arcs
carefully. Property 4 also demonstrates that P[aj] contains O(log n) heavy subpaths and each such heavy
subpath is a part of a heavy path. Each heavy subpath in P[aj] is one of the following two types: it
contains the root of the heavy path (Type 1 subpath) or it does not contain the root of the heavy path
(Type 2 subpath). For example, for the tree shown in Figure 2, if aj = (12, 13) then P[aj] contains one

9

Type 1 subpath a10-a11-a12 and one Type 2 subpath a2-a3-a4-a5. P[aj] contains O(log n) Type 1 subpaths
and at most one Type 2 subpath. If P[aj] contains a Type 2 subpath, then this subpath contains apex[j].
Our new formulation defines a transformation to represent heavy subpaths in a manner so that each Type
1 subpath in P[aj] contributes only one incoming arc to node j, and a Type 2 subpath in P[aj] contributes
O(log n) arcs. After these transformations, the total number of incoming arcs at node j are O(log n),
which will lead to the necessary speedup.

We will denote the network corresponding to the new formulation by G = (N , A). We will
explain later how to construct G efficiently. For now, we will explain the topological structure of G .
To construct it, we start with the graph G = (N, A) where we delete all arcs emanating from each left node
i ∈ N1 if ai is a heavy arc except the arc (i, i). It follows from Property 4 that each right node in G has
O(log n) incoming arcs at this stage. We have, however, modified the minimum cost flow problem
because we have eliminated the incoming arcs in P(aj) corresponding to arcs in the heavy subpaths.
Observe that the arcs we have deleted had zero cost and infinite capacity. We next show how to add arcs
and nodes to the network G so that the minimum cost flow problem in G is equivalent to the minimum
cost flow problem in G. We will show that by adding O(n) nodes and O(m log n) arcs, we can ensure that
for each arc (i, j) in G with the left node i and right node j, there is a directed path, say path[i, j], from
node i to node j in G of zero cost and infinite capacity. Moreover, if arc (i, j) is not in G, then we will not
create any path from node i to node j in G . Using this property, any flow in G may be transformed into a
flow in G as follows: for every xij units of flow sent on any arc (i, j) in G, we send xij units of flow on

path[i, j] from node i to node j in G . The converse result is also true. Given any flow x in G , we first
decompose the flow into unit flows along paths from node s to node t. For every unit of flow sent along
the path s-path[i, j]-t in A , we send a unit flow along the path s-i-j-t in A. This establishes one-to-one
correspondence between flows in the networks G and G both of which have the same cost.

In the subsequent discussion, we describe in detail the method used to represent heavy subpaths
in our transformation.

Handling Type 1 Subpaths

Consider a heavy path ap-ap+1- … - aq, with ap as the root of this heavy path. For this heavy
path, any heavy subpath of Type 1 will include exactly one of the following path segments: ap, ap-ap+1,
ap-ap+1-ap+2, … . , ap-ap+1-ap+2-… -aq. We can handle these possibilities using the transformation given

in Figure 3, where we expand the network G by adding the nodes (p,p 1,...,q+) and adding the directed

arcs (h, h) for each h = p, p+1, … , q, and the arcs (h 1− , h) for each h = p+1, p+2, … , q. (Notice that
each node h = p, p+1, … , q is a left node.) Each arc in Figure 3 has zero cost and infinite capacity.

Suppose that the tree path P[aj] contains the Type 1 subpath ap-ap+1- … - al for some l, p ≤ l ≤ q.
The minimum cost flow formulation in G contains the arcs (p, j), (p+1, j), … , (l, j). But in the new

formulation, we will only add the arc (l , j). It follows from our construct, as illustrated in Figure 3, that
there is a path from node i to node j in G for each i = p, p+1, … , l. Consequently, for each arc (h, j) in
G, p ≤ h ≤ l, there is a directed path of the same cost and capacity in G .

10

We introduce the construct described above in G for every heavy path in T0. This construct
allows each heavy subpath of Type 1 in any P[aj] to be equivalently represented by a single arc in G .

Since any P[aj] can contain at most O(log n) heavy subpaths of Type 1, G will have at most O(log n)
incoming arcs on any node j after Type 1 heavy subpaths have been considered.

Handling Type 2 Subpaths

Consider again the heavy path ap, ap+1, … , aq with ap as the root of the heavy path. For this
heavy path, any subpath of Type 2 can start at any of the arcs ap, ap+1, … , aq and can terminate at any of

the arcs ap, ap+1, … , aq. There are Ω((q-p+1)2) such possibilities and our transformation should be able
to handle all of them. We define a construct which will allow all of these possibilities by adding O(q-
p+1) nodes to G and increasing the indegree of a node in N2 by O(log n). First, we introduce more
notation.

We insert up to q-p+2 additional nodes to G and construct a binary tree T[p, q] with nodes p,
p+1, … , q, as the leaf nodes of the binary tree; each arc in this binary tree has zero cost and infinite
capacity. Figure 4 shows the construct for the heavy path 7-8-9- … -21. We denote by parent[i] as the
parent of node i in the binary tree. We refer to the two children of a same parent as siblings. For each
node i in the binary tree T[p, q], we let D[i] = {j : p ≤ j ≤ q and j is a descendant of node i}; that is, the set
of descendants of node i that are also the leaf nodes of T[p, q]. Observe that D[i] is an interval of
consecutive integers; let αi be the first integer in this interval and βi is the last integer in the interval.

Then, D[i] = [αi, βi]. For example, in Figure 4, D[B] = [7, 14] and D[F] = [15, 18].

Now consider P[aj]. Suppose that it contains a heavy Type 2 subpath S of the heavy path ap,

ap+1, … , aq, and S = {ak, ak+1, … , al} with p < k ≤ l ≤ q. (Recall that any heavy path or subpath
consists of consecutively numbered arcs.) We can thus alternatively represent the set S by [k, l]. We call
a node i in the binary tree T[p, q] maximal with respect to S if [αi, βi] ⊆ [k, l] but [αj, βj] ⊄ [k, l] for j =
parent[i]. For example, in Figure 4, if S = [11, 17], then the nodes E, L, and 17 are maximal while the
remaining nodes are not. We denote the unique path from node k to node l in the binary tree T[p, q] by
Path[k, l]. We call a set C of nodes in the binary tree T[p, q] to be a cover of S if [k, l] = i∈CU [αi, βi].

The set of maximal nodes of S forms a cover of S . We denote it by C[k, l] and call it the maximal cover
of S . For example, C[11, 17] = {E, L, 17} is the maximal cover of S = [11, 17]. Recall that graph G
contains an arc (i, j) for every node i ∈ [k, l]. But in the graph G , we will add an arc (r, j) for every r ∈
C[k, l]. It is easy to see that for each such arc (i, j) in G, there is a corresponding directed path from node
i to node j in G with the same cost and same capacity. We will now show that
|C[k, l]| = O(log n) and we can determine it in O(log n) time.

It is easy to verify that a cover is the maximal cover of S if and only if it does not contain two
siblings. This result yields the following iterative method to determine C[k, l]. We start with C′[k, l] =
{k, k+1, … , l} and if C′[k, l] contains two siblings we replace them by their parent. We repeat this
process until C′[k, l] has no siblings. Finally, we terminate with C′[k, l] = C[k, l]. Moreover, each node
of C[k, l] is either a node in Path[k, l] or a child of a node in Path[k, l]. This result implies that there are
only O(log n) nodes qualified to be in the set C[k, l] and yields the following more efficient algorithm to

11

determine C[k, l]. We consider each node i in Path[k, l] as well as the children of each node of Path[k, l]
and check each to see if it is a maximal node of [k, l]; if so, we add i to C[k, l]. This method can be
implemented in O(log n) time.

To summarize, we handle Type 2 subpaths in the following manner. For each heavy subpath ap,

ap+1, … , aq in T0, we introduce the construct of a binary tree as shown in Figure 4. (We point out that
this construct is a superimposition over the construct shown in Figure 3.) If some P[aj] contains a Type 2

subpath S , then we determine its maximal cover C[k, l] and add the arc (i, j) for each i ∈ C[k, l] to the
network G . Suppose i ∈ N1 and j ∈ N2. Then, there is an arc from node i to node j in G if and only if

there is a path from node i to node j in G .

Determining Type 1 and Type 2 Subpaths

We will now describe a method to determine all Type 1 and Type 2 subpaths for any P[aj], n ≤ j ≤
m. Notice that P[aj] may contain as many as (n-1) arcs and if we scan all arcs in it while identifying all
the Type 1 and Type 2 subpaths, then it would take a total of O(nm) time and would constitute the
bottleneck operation in the algorithm. We will show how we can determine these subpaths for any P[aj]

in O(log n) time. To do so, we would need two additional indices for each node in the tree T0, namely,
depth[i] and root[i]. The index depth[i] gives the depth of node i in the tree T0, that is, the number of arcs
in the predecessor path from node i to node 1. We define root[i] = i if (i, pred[i]) is a light arc; otherwise,
it is the root of the heavy path containing node i. For the tree T0, these indices can be determined in a
total of O(n) time.

We give in Figure 5, the procedure to determine the light arcs and heavy subpaths in any P[aj]

and add the corresponding arcs to the network G . The procedure assumes that we start with the network
G where we do not add arcs from nodes in N1 to the nodes in N2. We next add the constructs shown in
Figures 3 and 4 needed to handle Type 1 and Type 2 subpaths. We refer to the network at this stage by
G . The procedure as it proceeds add more arcs to G . The while loop in the procedure traces the
predecessor indices starting at the endpoints of the arc aj. For each light arc ar encountered it adds the arc
(r, j). For each heavy Type 1 subpath encountered, it identifies the corresponding heavy subpath using the
root indices, adds an appropriate arc to G and moves to the root of the heavy path.

At the termination of the while loop, there are five possibilities to consider, which we show in
Figure 6. The case (a) occurs when both the arcs in P[aj] incident to apex[j] are light arcs; cases (b) and
(c) occur when one of the arcs in P[aj] incident to apex[j] is a heavy arc and apex[j] is connected to its
predecessor by a light arcs; and cases (d) and (e) occur when one of the arcs in P[aj] incident to apex[j] is
a heavy arc and apex[j] is connected to its predecessor by a heavy arc. In case (a), we do not get any
Type 1 or Type 2 subpath. In cases (b) and (c), we get a Type 1 subpath. In cases (d) and (e), we get a
Type 2 subpath. Depending upon the case, the procedure adds appropriate arcs to G . The running time of
this procedure is O(log n) since it devotes O(1) time per light arc or per Type 1 heavy subpath, and
O(log n) time for a Type 2 heavy subpath. By Property 4, there are O(log n) light arcs or heavy subpaths
in P[aj] and at most one Type 2 heavy subpath.

12

procedure determine–subpaths(T0, aj);
begin

α := tail[j];
β := head[j];
while root[α] ≠ root[β] do

if depth[root[α]] > depth[root[β]] then scan(α) else scan(β);
if α = β then return (Case (a))
else if β = root[α] then add the arc (α , j) to G (Case (b))

 else if α = root[β] then add the arc (β , j) to G (Case (c))
 else if depth[α] > depth[β] then

 compute the set C[k, l] and add the arc (i, j) to G for every i ∈ C[k, l] (Case (d))
 else compute the set C[k, l] and add the arc (i, j) to G for every i ∈ C[k, l] (Case (e));

end;

procedure scan(h);
begin

let ar := (h, pred[h]);

if ar is a light arc then add the arc (r, j) to G and set h := pred[h];

if ar is a heavy arc then add the arc (r , j) to G and set h := root[h];
end;

Figure 5. Adding arcs to G corresponding to heavy subpaths in P[aj].

Worst-Case Complexity

To solve the node weighted matching problem on path graphs, we solve the minimum cost flow
problem in G = (N , A) using a minor modification of the algorithm described in Figure 1. The
modification consists of replacing the set N1 by the set N1 , where N1 contains all the nodes in N1 plus
all the additional nodes added by the constructs shown in Figures 3 and 4. We also replace R1(x) by

R1(x), where R1(x) denotes all the nodes in N1 that are reachable from node s in the residual network

G (x) with respect to the flow x. Since | N1 | is O(n), these changes do not affect the worst-case

complexity of the algorithm, which remains as O(n2 dmax). But since dmax = O(log n), the running time

of the algorithm improves to O(n2 log n). Hence the following theorem.

Theorem 2. The improved node weighted matching algorithm solves the bipartite node weighted
matching problem on the path graph, and hence the inverse spanning tree problem, in O(n2 log n) time.

ACKNOWLEDGEMENTS

We offer our sincere thanks to the referees for their insightful comments. In particular, the
detailed comments by one of the referees helped us greatly to improve the presentation. We gratefully

13

acknowledge support from the Office of Naval Research under contract ONR N00014-98-1-0317 as well
as a grant from the United Parcel Service.

REFERENCES

Ahuja, R. K., and J. B. Orlin. 1998a. Inverse Optimization. Working Paper, Sloan School of
Management, MIT, Cambridge, MA. Submitted for publication.

Ahuja, R. K., and J. B. Orlin. 1998b. Combinatorial algorithms for inverse network flow problems.
Working Paper, Sloan School of Management, MIT, Cambridge, MA. Submitted for publication.

Burton, D., B. Pulleyblank, and Ph. L. Toint. 1997. The inverse shortest paths problem with
upper bounds on shortest paths costs. In Network Optimization, edited by P. Pardalos, D.
W. Hearn, and W. H. Hager, Lecture Notes in Economics and Mathematical Systems,
Volume 450, pp. 156-171.

Burton, D., and Ph. L. Toint. 1992. On an instance of the inverse shortest paths problem. Mathematical
Programming 53, 45-61.

Burton, D., and Ph. L. Toint. 1994. On the use of an inverse shortest paths algorithm for recovering
linearly correlated costs. Mathematical Programming 63, 1-22.

Cai, M., and Y. Li. 1995. Inverse matroid intersection problem. Research Report, Institute of System
Science, Academia Sinica, Beijing, China. To appear in ZOR-Mathematical Methods of Operations
Research.

Cai, M., X. Yang, and Y. Li. 1996. Inverse polymatroidal flow problem. Research Report, Institute of
System Science, Academia Sinica, Beijing, China.

Sleator, D. D., and R. E. Tarjan. 1983. A data structure for dynamic trees. Journal of Computer and
System Sciences 24, 362-391.

Sokkalingam, P. T., R. K. Ahuja, and J. B. Orlin. 1999. Solving inverse spanning tree problems through
network flow techniques. Operations Research 47, 291-298.

R. E. Tarjan. 1983. Data Structures and Network Algorithms. SIAM, Philadelphia, PA.

Xu, S., and J. Zhang. 1995. An inverse problem of the weighted shortest path problem. Japanese
Journal of Industrial and Applied Mathematics 12, 47-59.

Yang, C., and J. Zhang. 1996. Inverse maximum capacity path with upper bound contraints. To appear in
OR Spektrum.

Yang, C., J. Zhang, and Z. Ma. 1997. Inverse maximum flow and minimum cut problem. Optimization
40, 147-170.

Zhang, J., and M. C. Cai. 1998. Inverse problem of minimum cuts, Mathematical Methods of Operations
Research 47, No. 1.

Zhang, J. and Z. Liu, 1996. Calculating some inverse linear programming problems, Journal of
Computational and Applied Mathematics 72, 261-273.

14

Zhang, J. Z. Liu, and Z. Ma. 1996. On the inverse problem of minimum spanning tree with partition
constraints. Mathematical Methods of Operations Research 44, 171-188.

Zhang, J., Z. Ma, and C. Yang. 1995. A column generation method for inverse shortest path problems,
ZOR-Mathematical Methods for Operations Research 41, 347-358.

15

1

Figure 2. The initial tree
0

2

4 5

7 8

9 1 1

1 1

1 1

1

3

6

a

a1

a1

a1

a1

a1

a1

a

aaa

a

a

a

a

16

Figure 3. Construct for handling Type 1
subpaths

.

.
.
.

p+1

p+2

q

p p

p+1

p+2

q

17

Figure 4. The construct for handling Type 2
subpath.

7 8 9 1 1 1 1 1 1 1 1 1 1 2 2

H I J K L M N O

G

C

FE

A

B

D

18

α = β

(a) (b) (d)

Figure 6. The five termination conditions.

(c) (e)

α

β

β

α

α

β α

β

